edoc

Browse by Basel Contributors ID

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Date | Item Type | Refereed | No Grouping
Jump to: No | Yes

No

Campbell, H. E. A. and Helminck, Aloysius G. and Kraft, Hanspeter and Wehlau, David, eds. (2010) Symmetry and spaces : in honor of Gerry Schwarz. Progress in mathematics, Vol. 278. Boston.

Yes

Kraft, Hanspter and Regeta, Andriy. (2017) Automorphisms of the Lie algebra of vector fields on affine n-space. Journal of the European Mathematical Society, 19 (5). pp. 1577-1588.

Kraft, Hanspeter. (2017) Automorphism groups of affine varieties and a characterization of affine n-space. Tranactions of the Moscow Mathematical Society, 78 (2). pp. 171-186.

Dufresne, Emilie and Kraft, Hanspeter. (2015) Invariants and separating morphisms for algebraic group actions. Mathematische Zeitschrift, 280 (1). pp. 231-255.

Andrist, Rafael B. and Kraft, Hanspeter. (2014) Varieties characterized by their endomorphisms. Mathematical research letters, Vol. 21. pp. 225-233.

Kraft, Hanspeter and Russell, Peter. (2014) Families of Group Actions, Generic Isotriviality, and Linearization. Transformation groups, 19. pp. 779-792.

Kraft, Hanspeter and Schwarz, Gerald W.. (2014) Representations with a Reduced Null Cone. In: Symmetry: Representation Theory and Its Applications : in Honor of Nolan R. Wallach, 257. pp. 419-474.

Kraft, Hanspeter and Stampfli, Immanuel. (2013) Automorphisms of the affine Cremona group. Annales de l'Institut Fourier, 63 (3). pp. 1137-1148.

Kraft, Hanspeter and Wallach, Nolan. (2010) Polarizations and Nullcone of Representations of Reductive Groups. Progress in mathematics, Vol. 278. pp. 153-168.

Kraft, Hanspeter and Kohls, Martin. (2010) Degree bounds for separating invariants. Mathematical research letters, Vol. 17. pp. 1171-1182.

Kraft, Hanspeter and Lötscher, Roland and Schwarz, Gerald W.. (2009) Compression of finite group actions and covariant dimension, II. Journal of algebra, 313 (1). pp. 94-107.

Kraft, Hanspeter and Schwarz, Gerald W.. (2007) Compression of finite group actions and covariant dimension. Journal of Algebra, 313 (1). pp. 268-291.

Kraft, Hanspeter. (2006) A result of Hermite and equations of degree 5 and 6. Journal of Algebra, 297 (1). pp. 234-253.

Draisma, Jan and Kraft, Hanspeter and Kuttler, Jochen. (2006) Nilpotent subspaces of maximal dimension in semisimple Lie algebras. Compositio Mathematica, 142 (2). pp. 464-476.

Kraft, Hanspeter and Wallach, Nolan. (2006) On the nullcone of representations of reductive groups. Pacific Journal of Mathematics, 224 (1). pp. 119-140.

Kraft, H.. (2005) Free C+ actions on affine threefolds. Contemporary mathematics, 369. pp. 165-175.

Kraft, Hanspeter and Schwarz, Gerald W.. (2001) Rational covariants of reductive groups and homaloidal polynomials. Mathematical research letters, Vol. 8. pp. 641-650.

Kraft, Hanspeter and Small, Lance W. and Wallach, Nolan R.. (2001) Properties and examples of FCR-algebras. Manuscripta mathematica, Vol. 104, H. 4. pp. 443-450.

Kraft, Hanspeter and Small, Lance W. and Wallach, Nolan R.. (1999) Hereditary properties of direct summands of algebras. Mathematical research letters, Vol. 6. pp. 371-376.

Howe, Roger and Kraft, Hanspeter. (1997) Principal covariants, multiplicity-free actions, and the K-types of holomorphic series. Progress in mathematics, 158. pp. 147-161.

Kraft, Hanspeter and Derksen, Harm. (1997) Constructive invariant theory. Collection SMF. Séminaire et congrès, 2. pp. 221-244.

Kraft, Hanspeter. (1996) Challenging problems in affine n-space. Astérisque, 47 (802). pp. 295-317.

Kraft, Hanspeter and Kutzschebauch, Frank. (1996) Equivariant affine line bundles and linearization. Mathematical research letters, Vol. 3. pp. 619-628.

Kraft, Hanspeter and Schwarz, Gerald W.. (1995) Finite automorphisms of affine n-space. In: Automorphisms of affine spaces. Dordrecht, pp. 55-66.

Kraft, Hanspeter. (1995) On a question of Yosef Stein. In: Automorphisms of affine spaces. Dordrecht, pp. 225-229.

Kraft, Hanspeter and Small, Lance W.. (1994) Invariant algebras and completely reducible representations. Mathematical research letters, Vol. 1. pp. 297-307.