Challenging problems in affine n-space
Date Issued
1996-01-01
Author(s)
Abstract
Complex affine n-space C^n, the basic object of algebraic geometry, offers a number of exciting and striking problems. The most famous one, the Jacobian Conjecture is the still unsolved. Others are the Cancellation Problem (Does Y times C^k simeq C^{n+k} imply that Y simeq C^n?), the Linearization Problem (Is every automorphism of C^n of finite order conjugate to a linear automorphism?), or the Embedding Problem (Are there other embeddings of C^{n-1} into C^n than the standard ones?). It turns out that these questions and several others are intimately related and have very interesting connections with problems arising from algebraic group actions and orbit spaces. We give a survey on these problems and discuss some recent progress and examples.
File(s)![Thumbnail Image]()
Loading...
Name
20110826102552_4e575890602c2.pdf
Size
208.87 KB
Format
Adobe PDF
Checksum
(MD5):67f7ac550708e9519f072491f86b53e7