Draisma, Jan and Kraft, Hanspeter and Kuttler, Jochen. (2006) Nilpotent subspaces of maximal dimension in semisimple Lie algebras. Compositio Mathematica, 142 (2). pp. 464476.

PDF
 Submitted Version
186Kb 
Official URL: http://edoc.unibas.ch/dok/A5842772
Downloads: Statistics Overview
Abstract
We show that a linear subspace of a reductive Lie algebra g that consists of nilpotent elements has dimension at most equal to the number of positive roots, and that any nilpotent subspace attaining this upper bound is equal to the nilradical of a Borel subalgebra of g. This generalizes a classical theorem of Gerstenhaber which states this fact for the algebra of n x n matrices.
Faculties and Departments:  05 Faculty of Science > Departement Mathematik und Informatik > Ehemalige Einheiten Mathematik & Informatik > Algebra (Kraft) 

UniBasel Contributors:  Kraft, Hanspeter 
Item Type:  Article, refereed 
Article Subtype:  Research Article 
Publisher:  Cambridge University Press 
ISSN:  0010437X 
eISSN:  15705846 
Note:  Publication type according to Uni Basel Research Database: Journal article 
Language:  English 
Identification Number:  
Last Modified:  26 Oct 2017 06:50 
Deposited On:  08 Jun 2012 06:48 
Repository Staff Only: item control page