edoc

The study of renal function and toxicity using zebrafish (Danio rerio) larvae as a vertebrate model

Bolten, Jan Stephan. The study of renal function and toxicity using zebrafish (Danio rerio) larvae as a vertebrate model. 2023, Doctoral Thesis, University of Basel, Faculty of Science.

[img]
Preview
PDF
Available under License CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives).

45Mb

Official URL: https://edoc.unibas.ch/94484/

Downloads: Statistics Overview

Abstract

Zebrafish (Danio rerio) is a powerful model in biomedical and pharmaceutical sciences. The zebrafish model was introduced to toxicological sciences in 1960, followed by its use in biomedical sciences to investigate vertebrate gene functions. As a consequence of many research projects in this field, the study of human genetic diseases became instantly feasible. Consequently, zebrafish have been intensively used in developmental biology and associated disciplines. Due to the simple administration of medicines and the high number of offspring, zebrafish larvae became widely more popular in pharmacological studies in the following years. In the past decade, zebrafish larvae were further established as a vertebrate model in the field of pharmacokinetics and nanomedicines. In this PhD thesis, zebrafish larvae were investigated as an earlystage in vivo vertebrate model to study renal function, toxicity, and were applied in drug-targeting projects using nanomedicines.
The first part focused on the characterization of the renal function of three-to four-dayold zebrafish larvae. Non-renal elimination processes were additionally described. Moreover, injection techniques, imaging parameters, and post-image processing scripts were established to serve as a toolbox for follow-up projects.
The second part analyzed the impact of gentamicin (a nephrotoxin) on the morphology of the pronephros of zebrafish larvae. Imaging methodologies such as fluorescent-based laser scanning microscopy and X-ray-based microtomography were applied. A profound comparison study of specimens acquired with different laboratory X-ray-based microtomography devices and a radiation facility was done to promote the use of X-ray-based microtomography for broader biomedical applications.
In the third part, the toxicity of nephrotoxins on mitochondria in renal epithelial cells of proximal tubules was assessed using the zebrafish larva model. Findings were compared with other teleost models such as isolated renal tubules of killifish (Fundulus heteroclitus). In view of the usefulness and high predictability of the zebrafish model, it was applied to study the pharmacokinetics of novel nanoparticles in the fourth part. Various in vivo pharmacokinetic parameters such as drug release, transfection of mRNA/pDNA plasmids, macrophage clearance, and the characterization of novel drug carriers that were manipulated with ultrasound were assessed in multiple collaborative projects.
Altogether, the presented zebrafish model showed to be a reliable in vivo vertebrate model to assess renal function, toxicity, and pharmacokinetics of nanoparticles. The application of the presented model will hopefully encourage others to reduce animal experiments in preliminary studies by fostering the use of zebrafish larvae.
Advisors:Huwyler, Jörg
Committee Members:Odermatt, Alex and Huwiler, Andrea
Faculties and Departments:05 Faculty of Science > Departement Pharmazeutische Wissenschaften > Pharmazie > Pharmaceutical Technology (Huwyler)
UniBasel Contributors:Huwyler, Jörg and Odermatt, Alex
Item Type:Thesis
Thesis Subtype:Doctoral Thesis
Thesis no:15043
Thesis status:Complete
Number of Pages:vi, 204
Language:English
Identification Number:
  • urn: urn:nbn:ch:bel-bau-diss150439
edoc DOI:
Last Modified:22 Jun 2023 04:30
Deposited On:21 Jun 2023 14:49

Repository Staff Only: item control page