edoc

Effect of the Catechol-O-Methyltransferase Inhibitors Tolcapone and Entacapone on Fatty Acid Metabolism in HepaRG Cells

Grünig, David and Felser, Andrea and Duthaler, Urs and Bouitbir, Jamal and Krähenbühl, Stephan. (2018) Effect of the Catechol-O-Methyltransferase Inhibitors Tolcapone and Entacapone on Fatty Acid Metabolism in HepaRG Cells. Toxicological sciences, 164 (2). pp. 477-488.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/68019/

Downloads: Statistics Overview

Abstract

Tolcapone and entacapone are catechol-O-methyltransferase inhibitors used in patients with Parkinson's disease. For tolcapone, patients with liver failure have been reported with microvesicular steatosis observed in the liver biopsy of 1 patient. We therefore investigated the impact of tolcapone and entacapone on fatty acid metabolism in HepaRG cells exposed for 24 h and on acutely exposed mouse liver mitochondria. In HepaRG cells, tolcapone induced lipid accumulation starting at 100 µM, whereas entacapone was ineffective up to 200 µM. In HepaRG cells, tolcapone-inhibited palmitate metabolism and activation starting at 100 µM, whereas entacapone did not affect palmitate metabolism. In isolated mouse liver mitochondria, tolcapone inhibited palmitate metabolism starting at 5 µM and entacapone at 50 µM. Inhibition of palmitate activation could be confirmed by the acylcarnitine pattern in the supernatant of HepaRG cell cultures. Tolcapone-reduced mRNA and protein expression of long-chain acyl-CoA synthetase 1 (ACSL1) and protein expression of ACSL5, whereas entacapone did not affect ACSL expression. Tolcapone increased mRNA expression of the fatty acid transporter CD36/FAT, impaired the secretion of ApoB100 by HepaRG cells and reduced the mRNA expression of ApoB100, but did not relevantly affect markers of fatty acid binding, lipid droplet formation and microsomal lipid transfer. In conclusion, tolcapone impaired hepatocellular fatty acid metabolism at lower concentrations than entacapone. Tolcapone increased mRNA expression of fatty acid transporters, inhibited activation of long-chain fatty acids and impaired very low-density lipoprotein secretion, causing hepatocellular triglyceride accumulation. The findings may be relevant in patients with a high tolcapone exposure and preexisting mitochondrial dysfunction.
Faculties and Departments:03 Faculty of Medicine
03 Faculty of Medicine > Bereich Medizinische Fächer (Klinik) > Klinische Pharmakologie > Klinische Pharmakologie (Krähenbühl)
03 Faculty of Medicine > Departement Klinische Forschung > Bereich Medizinische Fächer (Klinik) > Klinische Pharmakologie > Klinische Pharmakologie (Krähenbühl)
05 Faculty of Science > Departement Pharmazeutische Wissenschaften > Ehemalige Einheiten Pharmazie > Pharmakologie (Krähenbühl)
05 Faculty of Science > Departement Pharmazeutische Wissenschaften
UniBasel Contributors:Krähenbühl, Stephan and Bouitbir, Jamal and Grünig, David and Felser, Andrea and Duthaler, Urs
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Oxford University Press
ISSN:1096-6080
e-ISSN:1096-0929
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:26 Aug 2020 14:59
Deposited On:16 Apr 2020 13:09

Repository Staff Only: item control page