edoc

The PEA-15/PED protein protects glioblastoma cells from glucose deprivation-induced apoptosis via the ERK/MAP kinase pathway

Eckert, A. and Böck, B. C. and Tagscherer, K. E. and Haas, T. L. and Grund, K. and Sykora, J. and Herold-Mende, C. and Ehemann, V. and Hollstein, M. and Chneiweiss, H. and Wiestler, O. D. and Walczak, H. and Roth, W.. (2008) The PEA-15/PED protein protects glioblastoma cells from glucose deprivation-induced apoptosis via the ERK/MAP kinase pathway. Oncogene, Vol. 27, H. 8. pp. 1155-1166.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5253453

Downloads: Statistics Overview

Abstract

PEA-15 (phosphoprotein enriched in astrocytes 15 kDa) is a death effector domain-containing protein, which is involved in the regulation of apoptotic cell death. Since PEA-15 is highly expressed in cells of glial origin, we studied the role of PEA-15 in human malignant brain tumors. Immunohistochemical analysis of PEA-15 expression shows strong immunoreactivity in astrocytomas and glioblastomas. Phosphorylation of PEA-15 at Ser(116) is found in vivo in perinecrotic areas in glioblastomas and in vitro after glucose deprivation of glioblastoma cells. Overexpression of PEA-15 induces a marked resistance against glucose deprivation-induced apoptosis, whereas small interfering RNA (siRNA)-mediated downregulation of endogenous PEA-15 results in the sensitization to glucose withdrawal-mediated cell death. This antiapoptotic activity of PEA-15 under low glucose conditions depends on its phosphorylation at Ser(116). Moreover, siRNA-mediated knockdown of PEA-15 abolishes the tumorigenicity of U87MG glioblastoma cells in vivo. PEA-15 regulates the level of phosphorylated extracellular-regulated kinase (ERK)1/2 in glioblastoma cells and the PEA-15-dependent protection from glucose deprivation-induced cell death requires ERK1/2 signaling. PEA-15 transcriptionally upregulates the Glucose Transporter 3, which is abrogated by the inhibition of ERK1/2 phosphorylation. Taken together, our findings suggest that Ser(116)-phosphorylated PEA-15 renders glioma cells resistant to glucose deprivation-mediated cell death as encountered in poor microenvironments, for example in perinecrotic areas of glioblastomas.
Faculties and Departments:03 Faculty of Medicine > Bereich Psychiatrie (Klinik) > Erwachsenenpsychiatrie UPK
03 Faculty of Medicine > Departement Klinische Forschung > Bereich Psychiatrie (Klinik) > Erwachsenenpsychiatrie UPK
UniBasel Contributors:Eckert, Anne
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Macmillan
ISSN:0950-9232
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:23
Deposited On:22 Mar 2012 13:36

Repository Staff Only: item control page