Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin

Trotta, Kristine L. and Hayes, Beth M. and Schneider, Johannes P. and Wang, Jing and Todor, Horia and Rockefeller Grimes, Patrick and Zhao, Ziyi and Hatleberg, William L. and Silvis, Melanie R. and Kim, Rachel and Koo, Byoung Mo and Basler, Marek and Chou, Seemay. (2023) Lipopolysaccharide transport regulates bacterial sensitivity to a cell wall-degrading intermicrobial toxin. PLoS Pathogens, 19 (6). e1011454.

[img] PDF - Published Version
Available under License CC BY (Attribution).


Official URL: https://edoc.unibas.ch/95573/

Downloads: Statistics Overview


Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the functional basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli (Eco) genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa, Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, lipopolysaccharide, that modulate Tae1 toxicity in vivo. Disruption of genes in early lipopolysaccharide biosynthesis provided Eco with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study reveals the complex functional underpinnings of susceptibility to Tae1 and T6SS which regulate the impact of toxin-substrate interactions in vivo.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Infection Biology > Infection Biology (Basler)
UniBasel Contributors:Basler, Marek
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Public Library of Science
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
edoc DOI:
Last Modified:29 Aug 2023 15:52
Deposited On:29 Aug 2023 15:52

Repository Staff Only: item control page