Wicha, S. G. and Walz, A. and Cherkaoui-Rbati, M. H. and Bundgaard, N. and Kuritz, K. and Gumpp, C. and Gobeau, N. and Möhrle, J. and Rottmann, M. and Demarta-Gatsi, C.. (2022) New in vitro interaction-parasite reduction ratio assay for early derisk in clinical development of antimalarial combinations. Antimicrob Agents Chemother, 66 (11). e0055622.
PDF
- Published Version
Available under License CC BY (Attribution). 1995Kb |
Official URL: https://edoc.unibas.ch/91003/
Downloads: Statistics Overview
Abstract
The development and spread of drug-resistant phenotypes substantially threaten malaria control efforts. Combination therapies have the potential to minimize the risk of resistance development but require intensive preclinical studies to determine optimal combination and dosing regimens. To support the selection of new combinations, we developed a novel in vitro-in silico combination approach to help identify the pharmacodynamic interactions of the two antimalarial drugs in a combination which can be plugged into a pharmacokinetic/pharmacodynamic model built with human monotherapy parasitological data to predict the parasitological endpoints of the combination. This makes it possible to optimally select drug combinations and doses for the clinical development of antimalarials. With this assay, we successfully predicted the endpoints of two phase 2 clinical trials in patients with the artefenomel-piperaquine and artefenomel-ferroquine drug combinations. In addition, the predictive performance of our novel in vitro model was equivalent to that of the humanized mouse model outcome. Last, our more informative in vitro combination assay provided additional insights into the pharmacodynamic drug interactions compared to the in vivo systems, e.g., a concentration-dependent change in the maximum killing effect (Emax) and the concentration producing 50% of the killing maximum effect (EC50) of piperaquine or artefenomel or a directional reduction of the EC50 of ferroquine by artefenomel and a directional reduction of Emax of ferroquine by artefenomel. Overall, this novel in vitro-in silico-based technology will significantly improve and streamline the economic development of new drug combinations for malaria and potentially also in other therapeutic areas.
Faculties and Departments: | 09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) 09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Department of Medical Parasitology and Infection Biology (MPI) > Parasite Chemotherapy (Mäser) |
---|---|
UniBasel Contributors: | Walz, Annabelle and Gumpp, Christin and Rottmann, Matthias |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
ISSN: | 1098-6596 (Electronic)0066-4804 (Linking) |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Related URLs: | |
Identification Number: |
|
edoc DOI: | |
Last Modified: | 28 Dec 2022 09:04 |
Deposited On: | 28 Dec 2022 09:04 |
Repository Staff Only: item control page