Interaction-Stabilized Topological Magnon Insulator in Ferromagnets

Mook, Alexander and Plekhanov, Kirill and Klinovaja, Jelena and Loss, Daniel. (2021) Interaction-Stabilized Topological Magnon Insulator in Ferromagnets. Physical Review X, 11 (2). 021061.

PDF - Published Version
Available under License CC BY (Attribution).


Official URL: https://edoc.unibas.ch/86407/

Downloads: Statistics Overview


Condensed matter systems admit topological collective excitations above a trivial ground state, an example being Chern insulators formed by Dirac bosons with a gap at finite energies. However, in contrast to electrons, there is no particle-number conservation law for collective excitations, which gives rise to particle-number-nonconserving many-body interactions whose influence on single-particle topology is an open issue of fundamental interest in the field of topological quantum materials. Taking magnons in ferromagnets as an example, we uncover topological magnon insulators that are stabilized by interactions through opening Chern-insulating gaps in the magnon spectrum. This finding can be traced back to the fact that the particle-number nonconserving interactions break the effective time-reversal symmetry of the harmonic theory. Hence, magnon-magnon interactions are a source of topology that can introduce chiral edge states, whose chirality depends on the magnetization direction. Importantly, interactions do not necessarily cause detrimental damping but can give rise to topological magnons with exceptionally long lifetimes. We identify two mechanisms of interaction-induced topological phase transitions-one driven by an external field, the other by temperature-and show that they cause unconventional sign reversals of transverse transport signals, in particular, of the thermal Hall conductivity. We identify candidate materials where this many-body mechanism is expected to occur, such as the metal-organic kagome-lattice magnet Cu(1,3-benzenedicarboxylate), the van der Waals honeycomb-lattice magnet CrI3, and the multiferroic kamiokite (Fe2Mo3O8). Our results demonstrate that particle-number-nonconserving many-body interactions play an important role in generating nontrivial single-particle topology.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretical Nano/Quantum Physics (Klinovaja)
UniBasel Contributors:Klinovaja, Jelena
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Physical Society
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
edoc DOI:
Last Modified:12 Apr 2022 10:01
Deposited On:12 Apr 2022 07:53

Repository Staff Only: item control page