Mergenthaler, M. and Schupp, F. J. and Nersisyan, A. and Ares, N. and Baumgartner, A. and Schönenberger, C. and Briggs, G. A. D. and Leek, P. J. and Laird, E. A.. (2021) Radio-frequency characterization of a supercurrent transistor made from a carbon nanotube. Materials for Quantum Technology, 1. 035003.
|
PDF
- Published Version
Available under License CC BY (Attribution). 18Mb |
Official URL: https://edoc.unibas.ch/86339/
Downloads: Statistics Overview
Abstract
A supercurrent transistor is a superconductor-semiconductor hybrid device in which the Josephson supercurrent is switched on and off using a gate voltage. While such devices have been studied using DC transport, radio-frequency measurements allow for more sensitive and faster experiments. Here a supercurrent transistor made from a carbon nanotube is measured simultaneously via DC conductance and radio-frequency reflectometry. The radio-frequency measurement resolves all the main features of the conductance data across a wide range of bias and gate voltage, and many of these features are seen more clearly. These results are promising for measuring other kinds of hybrid superconducting devices, in particular for detecting the reactive component of the impedance, which a DC measurement can never detect.
Faculties and Departments: | 05 Faculty of Science > Departement Physik > Physik > Experimentalphysik Nanoelektronik (Schönenberger) |
---|---|
UniBasel Contributors: | Schönenberger, Christian and Baumgartner, Andreas |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | IOP |
ISSN: | 2633-4356 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Related URLs: | |
Identification Number: | |
edoc DOI: | |
Last Modified: | 07 Apr 2022 12:42 |
Deposited On: | 07 Apr 2022 12:42 |
Repository Staff Only: item control page