edoc

A Multipurpose First-in-Human Study With the Novel CXCR7 Antagonist ACT-1004-1239 Using CXCL12 Plasma Concentrations as Target Engagement Biomarker

Huynh, Christine and Henrich, Andrea and Strasser, Daniel S. and Boof, Marie-Laure and Al-Ibrahim, Mohamed and Meyer Zu Schwabedissen, Henriette E. and Dingemanse, Jasper and Ufer, Mike. (2021) A Multipurpose First-in-Human Study With the Novel CXCR7 Antagonist ACT-1004-1239 Using CXCL12 Plasma Concentrations as Target Engagement Biomarker. Clinical Pharmacology and Therapeutics, 109 (6). pp. 1648-1659.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/83965/

Downloads: Statistics Overview

Abstract

The C-X-C chemokine receptor 7 (CXCR7) has evolved as a promising, druggable target mainly in the immunology and oncology fields modulating plasma concentrations of its ligands CXCL11 and CXCL12 through receptor-mediated internalization. This "scavenging" activity creates concentration gradients of these ligands between blood vessels and tissues that drive directional cell migration. This randomized, double-blind, placebo-controlled first-in-human study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of ACT-1004-1239, a first-in-class drug candidate small-molecule CXCR7 antagonist. Food effect and absolute bioavailability assessments were also integrated in this multipurpose study. Healthy male subjects received single ascending oral doses of ACT-1004-1239 (n = 36) or placebo (n = 12). At each of six dose levels (1-200 mg), repeated blood sampling was done over 144 hours for pharmacokinetic/pharmacodynamic assessments using CXCL11 and CXCL12 as biomarkers of target engagement. ACT-1004-1239 was safe and well tolerated up to the highest tested dose of 200 mg. CXCL12 plasma concentrations dose-dependently increased and more than doubled compared with baseline, indicating target engagement, whereas CXCL11 concentrations remained unchanged. An indirect-response pharmacokinetic/pharmacodynamic model well described the relationship between ACT-1004-1239 and CXCL12 concentrations across the full dose range, supporting once-daily dosing for future clinical studies. At doses ≥ 10 mg, time to reach maximum plasma concentration ranged from 1.3 to 3.0 hours and terminal elimination half-life from 17.8 to 23.6 hours. The exposure increase across the dose range was essentially dose-proportional and no relevant food effect on pharmacokinetics was determined. The absolute bioavailability was 53.0% based on radioactivity data after oral vs. intravenous; 14; C-radiolabeled microtracer administration of ACT-1004-1239. Overall, these comprehensive data support further clinical development of ACT-1004-1239.
Faculties and Departments:05 Faculty of Science > Departement Pharmazeutische Wissenschaften > Pharmazie > Biopharmacy (Meyer zu Schwabedissen)
UniBasel Contributors:Meyer zu Schwabedissen, Henriette and Huynh, Christine
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Wiley
ISSN:0009-9236
e-ISSN:1532-6535
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:06 Sep 2021 10:20
Deposited On:06 Sep 2021 10:20

Repository Staff Only: item control page