edoc

Second-Order Topological Superconductivity in π-Junction Rashba Layers

Volpez, Yanick and Loss, Daniel and Klinovaja, Jelena. (2019) Second-Order Topological Superconductivity in π-Junction Rashba Layers. Physical Review Letters, 122 (12). p. 126402.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/75406/

Downloads: Statistics Overview

Abstract

We consider a Josephson junction bilayer consisting of two tunnel-coupled two-dimensional electron gas layers with Rashba spin-orbit interaction, proximitized by a top and bottom s-wave superconductor with phase difference ϕ close to π. We show that, in the presence of a finite weak in-plane Zeeman field, the bilayer can be driven into a second order topological superconducting phase, hosting two Majorana corner states (MCSs). If ϕ=π, in a rectangular geometry, these zero-energy bound states are located at two opposite corners determined by the direction of the Zeeman field. If the phase difference ϕ deviates from π by a critical value, one of the two MCSs gets relocated to an adjacent corner. As the phase difference ϕ increases further, the system becomes trivially gapped. The obtained MCSs are robust against static and magnetic disorder. We propose two setups that could realize such a model: one is based on controlling ϕ by magnetic flux, the other involves an additional layer of randomly oriented magnetic impurities responsible for the phase shift of π in the proximity-induced superconducting pairing.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretische Physik Mesoscopics (Loss)
UniBasel Contributors:Loss, Daniel and Klinovaja, Jelena
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Physical Society
ISSN:0031-9007
e-ISSN:1079-7114
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:21 Apr 2020 10:39
Deposited On:30 Mar 2020 12:32

Repository Staff Only: item control page