Metal Ion-Coordinating Properties in Aqueous Solution of the Antivirally Active Nucleotide Analogue (S)-9-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA). Quantification of Complex Isomeric Equilibria

Blindauer, Claudia A. and Holy, Antonin and Operschall, Bert P. and Sigel, Astrid and Song, Bin and Sigel, Helmut. (2019) Metal Ion-Coordinating Properties in Aqueous Solution of the Antivirally Active Nucleotide Analogue (S)-9-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA). Quantification of Complex Isomeric Equilibria. European Journal of Inorganic Chemistry, 35. pp. 3892-3903.

[img] PDF - Accepted Version
Restricted to Repository staff only until 11 September 2020.


Official URL: https://edoc.unibas.ch/75017/

Downloads: Statistics Overview


Acyclic nucleoside phosphonates are of medical relevance and deserve detailed chemical characterization. We focus here on ( S )‐9‐[3‐hydroxy‐2‐(phosphonomethoxy)propyl]adenine (HPMPA) and include for comparison 9‐[2‐(phosphonomethoxy)ethyl]adenine (PMEA), as well as the nucleobase‐free (phosphonomethoxy)ethane (PME) and ( R )‐hydroxy‐2‐(phosphonomethoxy)propane (HPMP). The acidity constants of H 3 (HPMPA) + were determined and compared with those of the related phosph(on)ate derivatives; they are also needed to understand the properties of the metal ion complexes. Given that in vivo nucleotides and their analogues participate in reactions typically as divalent metal ion (M 2+ ) complexes, the stability constants of the M(H;HPMPA) + and M(HPMPA) species with M 2+ = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Mn 2+ , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , and Cd 2+ were measured. Comparisons between the results for HPMPA 2- and the previous data for PMEA 2- , HPMP 2- and PME 2- revealed that for most M(HPMPA) complexes the enhanced stability (the enhancement relative to the stability of a simple phosphonate‐M 2+ coordination), can solely be explained by the formation of 5‐membered chelates involving the ether oxygen. These chelates occur in equilibrium with simple ′open′ phosphonate‐M 2+ species, the phosphonate group being the primary binding site. The only exceptions are the M(HPMPA) complexes of Ni 2+ , Cu 2+ , and Zn 2+ , which show an additional stability enhancement; in these instances not only the indicated 5‐membered chelates are formed, but M 2+ coordinates in addition to N3 of the adenine residue forming a 7‐membered chelate ring. This observation regarding N3 is important because it emphasizes the metal ion affinity of this site (which is often ignored). Note that in the DNA double helix N3 is exposed to the solvent in the minor groove. The stability data for the monoprotonated M(H;HPMPA) + complexes suggest that these carry H + at the phosphonate group whereas M 2+ is partly at the nucleobase and partly also at the phosphonate group. The ratios of these isomers depend on the metal ion involved, e.g., for Cu(H;HPMPA) the ratio of the isomers is about 1:1.
Faculties and Departments:05 Faculty of Science > Departement Chemie
05 Faculty of Science > Departement Chemie > Former Organization Units Chemistry > Anorganische Chemie (Sigel)
UniBasel Contributors:Sigel, Helmut and Sigel, Astrid and Operschall, Bert and Song, Bong Seok
Item Type:Article, refereed
Article Subtype:Research Article
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:04 Feb 2020 10:03
Deposited On:29 Jan 2020 14:01

Repository Staff Only: item control page