edoc

Construction and disruption of spatial memory networks during development

Baram, Tallie Z. and Donato, Flavio and Holmes, Gregory L.. (2019) Construction and disruption of spatial memory networks during development. Learning & memory, 26 (7). pp. 206-218.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/71202/

Downloads: Statistics Overview

Abstract

Spatial memory, the aspect of memory involving encoding and retrieval of information regarding one's environment and spatial orientation, is a complex biological function incorporating multiple neuronal networks. Hippocampus-dependent spatial memory is not innate and emerges during development in both humans and rodents. In children, nonhippocampal dependent egocentric (self-to-object) memory develops before hippocampal-dependent allocentric (object-to-object) memory. The onset of allocentric spatial memory abilities in children around 22 mo of age occurs at an age-equivalent time in rodents when spatially tuned grid and place cells arise from patterned activity propagating through the entorhinal-hippocampal circuit. Neuronal activity, often driven by specific sensory signals, is critical for the normal maturation of brain circuits This patterned activity fine-tunes synaptic connectivity of the network and drives the emergence of specific firing necessary for spatial memory. Whereas normal activity patterns are required for circuit maturation, aberrant neuronal activity during development can have major adverse consequences, disrupting the development of spatial memory. Seizures during infancy, involving massive bursts of synchronized network activity, result in impaired spatial memory when animals are tested as adolescents or adults. This impaired spatial memory is accompanied by alterations in spatial and temporal coding of place cells. The molecular mechanisms by which early-life seizures lead to disruptions at the cellular and network levels are now becoming better understood, and provide a target for intervention, potentially leading to improved cognitive outcome in individuals experiencing early-life seizures.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Neurobiology > Neurobiology (Donato)
UniBasel Contributors:Donato, Flavio
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Cold Spring Harbor Laboratory Press
ISSN:1549-5485
e-ISSN:1072-0502
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:10 Nov 2020 09:19
Deposited On:10 Nov 2020 09:19

Repository Staff Only: item control page