Rational points on Grassmannians and unlikely intersections in tori

Capuano, Laura and Masser, David and Pila, Jonathan and Zannier, Umberto. (2016) Rational points on Grassmannians and unlikely intersections in tori. Preprints Fachbereich Mathematik, 2016 (28).

[img] PDF - Published Version

Official URL: https://edoc.unibas.ch/69969/

Downloads: Statistics Overview


In this paper, we present an alternative proof of a finiteness theorem due to Bombieri, Masser and Zannier concerning intersections of a curve in $\mathbb{G}_m^n$ with algebraic subgroups of dimension $n−2$. Actually, the present conclusion will give more uniform bounds which respect to the former statement. The proof uses a method introduced for the first time by Pila and Zannier to give an alternative proof of Manin-Mumford conjecture and a theorem to count points that satisfy a certain number of linear conditions with rational coefficients. This method has been largely used in many different problems in the context of “unlikely intersections”.
Faculties and Departments:05 Faculty of Science > Departement Mathematik und Informatik > Ehemalige Einheiten Mathematik & Informatik > Zahlentheorie (Masser)
12 Special Collections > Preprints Fachbereich Mathematik
UniBasel Contributors:Masser, David
Item Type:Preprint
Publisher:Universität Basel
Last Modified:21 Apr 2019 11:53
Deposited On:28 Mar 2019 09:51

Repository Staff Only: item control page