edoc

Ensemble Kalman filters for reliability estimation in perfusion inference

Zaspel, Peter Eberhard. (2017) Ensemble Kalman filters for reliability estimation in perfusion inference. Preprints Fachbereich Mathematik, 2017 (04).

[img] PDF - Published Version
2529Kb

Official URL: https://edoc.unibas.ch/69942/

Downloads: Statistics Overview

Abstract

We consider the solution of inverse problems in dynamic contrast–enhanced imaging by means of Ensemble Kalman filters. Our quantity of interest is blood perfusion, i.e. blood flow rates in tissue. While existing approaches to compute blood perfusion parameters for given time series of radiological measurements mainly rely on deterministic, deconvolution–based methods, we aim at recovering probabilistic solution information for given noisy measurements. To this end, we model radiological image capturing as sequential data assimilation process and solve it by an Ensemble Kalman filter. Thereby, we recover deterministic results as ensemble–based mean and are able to compute reliability information such as probabilities for the perfusion to be in a given range. Our target application is the inference of blood perfusion parameters in the human brain. A numerical study shows promising results for artificial measurements generated by a Digital Perfusion Phantom.
Faculties and Departments:05 Faculty of Science > Departement Mathematik und Informatik > Mathematik > Computational Mathematics (Harbrecht)
12 Special Collections > Preprints Fachbereich Mathematik
UniBasel Contributors:Zaspel, Peter
Item Type:Preprint
Publisher:Universität Basel
Language:English
edoc DOI:
Last Modified:20 Apr 2019 20:27
Deposited On:28 Mar 2019 09:51

Repository Staff Only: item control page