edoc

Marinisporobacter balticus gen. nov., sp. nov., Desulfosporosinus nitroreducens sp. nov. and Desulfosporosinus fructosivorans sp. nov., new spore-forming bacteria isolated from subsurface sediments of the Baltic Sea

Vandieken, Verona and Niemann, Helge and Engelen, Bert and Cypionka, Heribert. (2017) Marinisporobacter balticus gen. nov., sp. nov., Desulfosporosinus nitroreducens sp. nov. and Desulfosporosinus fructosivorans sp. nov., new spore-forming bacteria isolated from subsurface sediments of the Baltic Sea. International Journal of Systematic and Evolutionary Microbiology, 67 (6). pp. 1887-1893.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/63129/

Downloads: Statistics Overview

Abstract

Four novel Gram-stain-positive, endospore-forming bacteria of the order Clostridiales were isolated from subsurface sediments sampled during International Ocean Discovery Program Expedition 347 to the Baltic Sea. One strain (59.4MT) grew as an obligate heterotroph by aerobic respiration and anaerobically by fermentation. Optimum growth was observed with 0.5 % NaCl at 25 °C and pH 7.0-7.3. Analysis of 16S rRNA gene sequences of 59.4MT revealed Alkaliphilus transvaalensis (92.3 % identity), Candidatus Geosporobacter ferrireducens (92.2 %), Geosporobacter subterraneus (91.9 %) and Alkaliphilus peptidifermentans (91.7 %) to be the closest relatives. On the basis of the results of phenotypic and genotypic analyses, we propose that strain 59.4MT represents a novel species within a novel genus, Marinisporobacter balticus gen. nov., sp. nov., with the type strain 59.4MT (=DSM 102940T=JCM 31103T). Three other strains, 59.4F, 59.4BT and 63.6FT, were affiliated with the genus Desulfosporosinus and grew as strictly anaerobic sulfate reducers. These strains additionally used thiosulfate, elemental sulfur, sulfite and DMSO as electron acceptors and hydrogen as an electron donor. Strains 59.4F and 59.4BT had identical 16S rRNA gene sequences, which were most similar to those of Desulfosporosinus lacus (97.8 %), Desulfosporosinus hippei (97.3 %) and Desulfosporosinus orientis (97.3 %). Strain 63.6FT was closely related to D. lacus (97.7 %), Desulfosporosinus meridiei (96.6 %) and D. hippei (96.5 %). The similarity of 16S rRNA gene sequences of strains 59.4BT and 63.6FT was 96.6 %. We propose the new names Desulfosporosinus nitroreducens sp. nov., incorporating strain 59.4F (=DSM 101562=JCM 31104) and the type strain 59.4BT (=DSM 101608T=JCM 31105T), and Desulfosporosinus fructosivorans sp. nov., with the type strain 63.6FT (=DSM 101609T=JCM 31106T).
Faculties and Departments:05 Faculty of Science > Departement Umweltwissenschaften > Geowissenschaften > Geochemie Stoffkreisläufe (Lehmann)
UniBasel Contributors:Niemann, Helge
Item Type:Article, refereed
Article Subtype:Research Article
ISSN:1466-5026
e-ISSN:1466-5034
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:04 May 2019 07:06
Deposited On:04 May 2019 07:06

Repository Staff Only: item control page