edoc

Systematic Integration of Brain eQTL and GWAS Identifies ZNF323 as a Novel Schizophrenia Risk Gene and Suggests Recent Positive Selection Based on Compensatory Advantage on Pulmonary Function

Luo, Xiong-Jian and Mattheisen, Manuel and Li, Ming and Huang, Liang and Rietschel, Marcella and Børglum, Anders D. and Als, Thomas D. and van den Oord, Edwin J. and Aberg, Karolina A. and Mors, Ole and Mortensen, Preben Bo and Luo, Zhenwu and Degenhardt, Franziska and Cichon, Sven and Schulze, Thomas G. and Nöthen, Markus M. and iPSYCH-GEMS, SCZ working group and MooDS, SCZ Consortium and Su, Bing and Zhao, Zhongming and Gan, Lin and Yao, Yong-Gang. (2015) Systematic Integration of Brain eQTL and GWAS Identifies ZNF323 as a Novel Schizophrenia Risk Gene and Suggests Recent Positive Selection Based on Compensatory Advantage on Pulmonary Function. Schizophrenia Bulletin, 41 (6). pp. 1294-1308.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/61570/

Downloads: Statistics Overview

Abstract

Genome-wide association studies have identified multiple risk variants and loci that show robust association with schizophrenia. Nevertheless, it remains unclear how these variants confer risk to schizophrenia. In addition, the driving force that maintains the schizophrenia risk variants in human gene pool is poorly understood. To investigate whether expression-associated genetic variants contribute to schizophrenia susceptibility, we systematically integrated brain expression quantitative trait loci and genome-wide association data of schizophrenia using Sherlock, a Bayesian statistical framework. Our analyses identified ZNF323 as a schizophrenia risk gene (P = 2.22x10(-6)). Subsequent analyses confirmed the association of the ZNF323 and its expression-associated single nucleotide polymorphism rs1150711 in independent samples (gene-expression: P = 1.40x10(-6); single-marker meta-analysis in the combined discovery and replication sample comprising 44123 individuals: P = 6.85x10(-10)). We found that the ZNF323 was significantly downregulated in hippocampus and frontal cortex of schizophrenia patients (P = .0038 and P = .0233, respectively). Evidence for pleiotropic effects was detected (association of rs1150711 with lung function and gene expression of ZNF323 in lung: P = 6.62x10(-5) and P = 9.00x10(-5), respectively) with the risk allele (T allele) for schizophrenia acting as protective allele for lung function. Subsequent population genetics analyses suggest that the risk allele (T) of rs1150711 might have undergone recent positive selection in human population. Our findings suggest that the ZNF323 is a schizophrenia susceptibility gene whose expression may influence schizophrenia risk. Our study also illustrates a possible mechanism for maintaining schizophrenia risk variants in the human gene pool.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Human Genetics (Cichon)
UniBasel Contributors:Cichon, Sven
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Oxford University Press
ISSN:0586-7614
e-ISSN:1745-1701
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:14 Sep 2018 16:19
Deposited On:14 Sep 2018 16:19

Repository Staff Only: item control page