GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks

Vertkin, I. and Styr, B. and Slomowitz, E. and Ofir, N. and Shapira, I. and Berner, D. and Fedorova, T. and Laviv, T. and Barak-Broner, N. and Greitzer-Antes, D. and Gassmann, M. and Bettler, B. and Lotan, I. and Slutsky, I.. (2015) GABAB receptor deficiency causes failure of neuronal homeostasis in hippocampal networks. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 112 (25). E3291-9.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/61411/

Downloads: Statistics Overview


Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Division of Physiology > Molecular Neurobiology Synaptic Plasticity (Bettler)
UniBasel Contributors:Bettler, Bernhard
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:HighWire Press
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:30 Oct 2018 18:36
Deposited On:16 Oct 2018 16:48

Repository Staff Only: item control page