Reeg, Christopher and Schrade, Constantin and Klinovaja, Jelena and Loss, Daniel. (2017) DIII topological superconductivity with emergent time-reversal symmetry. Physical Review B, 96 (16). p. 161407.
|
PDF
- Published Version
194Kb |
Official URL: https://edoc.unibas.ch/60920/
Downloads: Statistics Overview
Abstract
We find a class of topological superconductors which possess an emergent time-reversal symmetry that is present only after projecting to an effective low-dimensional model. We show that a topological phase in symmetry class DIII can be realized in a noninteracting system coupled to an s-wave superconductor only if the physical time-reversal symmetry of the system is broken, and we provide three general criteria that must be satisfied in order to have such a phase. We also provide an explicit model which realizes the class DIII topological superconductor in 1D. We show that, just as in time-reversal invariant topological superconductors, the topological phase is characterized by a Kramers pair of Majorana fermions that are protected by the emergent time-reversal symmetry.
Faculties and Departments: | 05 Faculty of Science > Departement Physik > Physik > Theoretical Nano/Quantum Physics (Klinovaja) |
---|---|
UniBasel Contributors: | Klinovaja, Jelena |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | American Physical Society |
ISSN: | 2469-9950 |
e-ISSN: | 2469-9969 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Identification Number: | |
edoc DOI: | |
Last Modified: | 07 Mar 2018 14:04 |
Deposited On: | 07 Mar 2018 14:04 |
Repository Staff Only: item control page