Kapfhammer, J. P. and Gugger, O. S.. (2012) The analysis of purkinje cell dendritic morphology in organotypic slice cultures. Journal of visualized experiments, H. 61 , 3637.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A6338432
Downloads: Statistics Overview
Abstract
Purkinje cells are an attractive model system for studying dendritic development, because they have an impressive dendritic tree which is strictly oriented in the sagittal plane and develops mostly in the postnatal period in small rodents (3). Furthermore, several antibodies are available which selectively and intensively label Purkinje cells including all processes, with anti-Calbindin D28K being the most widely used. For viewing of dendrites in living cells, mice expressing EGFP selectively in Purkinje cells (11) are available through Jackson labs. Organotypic cerebellar slice cultures cells allow easy experimental manipulation of Purkinje cell dendritic development because most of the dendritic expansion of the Purkinje cell dendritic tree is actually taking place during the culture period (4). We present here a short, reliable and easy protocol for viewing and analyzing the dendritic morphology of Purkinje cells grown in organotypic cerebellar slice cultures. For many purposes, a quantitative evaluation of the Purkinje cell dendritic tree is desirable. We focus here on two parameters, dendritic tree size and branch point numbers, which can be rapidly and easily determined from anti-calbindin stained cerebellar slice cultures. These two parameters yield a reliable and sensitive measure of changes of the Purkinje cell dendritic tree. Using the example of treatments with the protein kinase C (PKC) activator PMA and the metabotropic glutamate receptor 1 (mGluR1) we demonstrate how differences in the dendritic development are visualized and quantitatively assessed. The combination of the presence of an extensive dendritic tree, selective and intense immunostaining methods, organotypic slice cultures which cover the period of dendritic growth and a mouse model with Purkinje cell specific EGFP expression make Purkinje cells a powerful model system for revealing the mechanisms of dendritic development.
Faculties and Departments: | 03 Faculty of Medicine > Departement Biomedizin > Division of Anatomy > Developmental Neurobiology and Regeneration (Kapfhammer) |
---|---|
UniBasel Contributors: | Kapfhammer, Josef |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | JoVE |
ISSN: | 1940-087X |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Related URLs: | |
Identification Number: |
|
Last Modified: | 08 May 2015 08:45 |
Deposited On: | 08 May 2015 08:45 |
Repository Staff Only: item control page