Brauchli, S. Y. and Bozic-Weber, B. and Constable, E. C. and Hostettler, N. and Housecroft, C. E. and Zampese, J.. (2014) Factors controlling the photoresponse of copper(I) diimine dyes containing hole-transporting dendrons in dye-sensitized solar cells. RSC advances, 4 (66). pp. 34801-34815.
|
PDF
- Published Version
Available under License CC BY (Attribution). 2206Kb |
Official URL: http://edoc.unibas.ch/dok/A6298837
Downloads: Statistics Overview
Abstract
Two series of 2,2′-bipyridine (bpy) ligands bearing different 6,6′-substituents (Me, nBu, isoBu, hexyl, Ph and 2-naphthyl) and carrying first-generation (ligands 1–6) or second-generation (ligands 7–12) hole transporting dendrons in the 4,4′-positions are reported. They have been incorporated into homoleptic copper(I) complexes [CuL2][PF6]. FTO/TiO2 electrodes functionalized with the anchoring ligand ((6,6′-dimethyl-[2,2′-bipyridine]-4,4′-diyl)bis(4,1-phenylene))bis(phosphonic acid), 13, were dipped in either CH2Cl2 or acetone solutions of [CuL2][PF6] to produce two series of surface-bound heteroleptic dyes. Their performances in dye-sensitized solar cells (DSCs) are assessed. Solid-state absorption spectra of dye-functionalized electrodes show that dye uptake is greater if acetone is used in the dye-dipping cycle rather than CH2Cl2, and the DSCs made using acetone generally perform better than analogous DSCs made using CH2Cl2. Using acetone-dipping solutions, the best DSC efficiencies are obtained with the second-generation dyes [Cu(13)(L)]+ (L = 7–11 with Me, nBu, isoBu, hexyl, Ph groups); [Cu(13)(12)]+ (12 contains 2-naphthyl groups in the 6,6′-positions) and its first-generation analogue [Cu(13)(6)]+ perform poorly. When CH2Cl2 is used in the dipping cycle, DSCs with dyes [Cu(13)(1)]+ and [Cu(13)(7)]+ (6,6′-Me2-substituted) show the highest VOC, JSC and η values, and EQE spectra confirm electron injection over a wider energy range than for other dyes. For CH2Cl2 in the dipping cycle (but not for acetone), [Cu(13)(5)]+ (6,6′-Ph2-substituted) performs as well as [Cu(13)(1)]+. The overall results of the study indicate that a combination of small 6,6′-substituents and acetone in the dye-dipping cycle lead to the best performing dyes.
Faculties and Departments: | 05 Faculty of Science > Departement Chemie > Former Organization Units Chemistry > Anorganische Chemie (Constable) 05 Faculty of Science > Departement Chemie > Former Organization Units Chemistry > Anorganische Chemie (Housecroft) |
---|---|
UniBasel Contributors: | Housecroft, Catherine Elizabeth and Bozic Weber, Biljana and Constable, Edwin Charles and Zampese, Jennifer Ann and Brauchli, Sven and Hostettler, Niklaus |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Royal Society of Chemistry |
ISSN: | 2046-2069 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Identification Number: |
|
edoc DOI: | |
Last Modified: | 31 Dec 2015 10:56 |
Deposited On: | 06 Feb 2015 09:58 |
Repository Staff Only: item control page