edoc

Metallohexacycles containing 4′-aryl-4,2′:6′,4′′-terpyridines: conformational preferences and fullerene capture

Constable, E. C. and Housecroft, C. E. and Vujovic, S. and Zampese, J. A.. (2014) Metallohexacycles containing 4′-aryl-4,2′:6′,4′′-terpyridines: conformational preferences and fullerene capture. CrystEngComm, 16 (3). pp. 328-338.

[img]
Preview
PDF - Published Version
Available under License CC BY (Attribution).

4Mb

Official URL: http://edoc.unibas.ch/dok/A6205415

Downloads: Statistics Overview

Abstract

4′-(4-Biphenylyl)-4,2′:6′,4′′-terpyridine (1) reacts with ZnCl2 or ZnBr2 to produce discrete metallohexacycles instead of the expected one-dimensional coordination polymers. Structural determination of [{ZnCl2(1)}6] and [{ZnBr2(1)}6] reveals that the metallomacrocycles adopt a conformation in which the biphenyl domains are in an alternating up/down arrangement (conformer I). The hexamers pack into tubes; within each tube, biphenyl domains of every second hexamer are interdigitated, and these assemblies then interlock to produce a rigid architecture supported by pyridine–phenyl face-to-face contacts. π-Stacking between 4,2′:6′,4′′-tpy domains operates between adjacent tubes. Reaction of ZnCl2 or ZnBr2 with 4′-(2′,3′,4′,5′,6′-pentafluorobiphenyl-4-yl)-4,2′:6′,4′′-terpyridine (2) leads to [{ZnCl2(2)}6] and [{ZnBr2(2)}6], each crystallizing in two conformations; the centrosymmetric chair-conformer (II) is dominant with respect to the tub-like conformer I. Both conformers pack into tube assemblies, but that consisting of conformer II is less rigid than that of I. Reaction of 4′-(4-(naphthalen-1-yl)phenyl)-4,2′:6′,4′′-terpyridine (3) with ZnCl2 or ZnBr2 leads to [{ZnX2(2)}6] (X = Cl, Br) in conformer I; disordering of the naphthyl substituents is problematic. Assembly of the metallohexacycle in the presence of C60 results in the formation of the host–guest complex [2{ZnCl2(3)}6·C60]·6MeOH·16H2O. The [{ZnCl2(3)}6] units assemble into a tube-like array that mimics that observed in the parent host. In the host–guest complex, each crystallographically-ordered C60 is trapped between six ordered naphthyl units, three from one hexamer and three from its interdigitated partner, and the C60–six-naphthyl unit sits centrally within a second [{ZnCl2(3)}6] macrocycle. In contrast to previously described tube-like host–guest assemblies featuring fullerene entrapment, [2{ZnCl2(3)}6·C60] is unusual in having an ordered array of C60 molecules present in every other available cavity, despite the fact that sterically, the ‘empty’ cavity could, in principle, host a C60 guest.
Faculties and Departments:05 Faculty of Science > Departement Chemie > Former Organization Units Chemistry > Anorganische Chemie (Constable)
05 Faculty of Science > Departement Chemie > Former Organization Units Chemistry > Anorganische Chemie (Housecroft)
UniBasel Contributors:Housecroft, Catherine Elizabeth and Zampese, Jennifer Ann and Constable, Edwin Charles and Vujovic, Srboljub
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Royal Society of Chemistry
ISSN:1466-8033
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Identification Number:
edoc DOI:
Last Modified:31 Dec 2015 10:54
Deposited On:31 Jan 2014 09:49

Repository Staff Only: item control page