edoc

Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish

Suga, Hiroshi and Tschopp, Patrick and Graziussi, Daria F. and Stierwald, Michael and Schmid, Volker and Gehring, Walter J.. (2010) Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish. Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, H. 32. pp. 14263-14268.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5844332

Downloads: Statistics Overview

Abstract

Pax transcription factors are involved in a variety of developmental processes in bilaterians, including eye development, a role typically assigned to Pax-6. Although no true Pax-6 gene has been found in nonbilateral animals, some jellyfish have eyes with complex structures. In the cubozoan jellyfish Tripedalia, Pax-B, an ortholog of vertebrate Pax-2/5/8, had been proposed as a regulator of eye development. Here we have isolated three Pax genes (Pax-A, Pax-B, and Pax-E) from Cladonema radiatum, a hydrozoan jellyfish with elaborate eyes. Cladonema Pax-A is strongly expressed in the retina, whereas Pax-B and Pax-E are highly expressed in the manubrium, the feeding and reproductive organ. Misexpression of Cladonema Pax-A induces ectopic eyes in Drosophila imaginal discs, whereas Pax-B and Pax-E do not. Furthermore, Cladonema Pax-A paired domain protein directly binds to the 5' upstream region of eye-specific Cladonema opsin genes, whereas Pax-B does not. Our data suggest that Pax-A, but not Pax-B or Pax-E, is involved in eye development and/or maintenance in Cladonema. Phylogenetic analysis indicates that Pax-6, Pax-B, and Pax-A belong to different Pax subfamilies, which diverged at the latest before the Cnidaria-Bilateria separation. We argue that our data, showing the involvement of Pax genes in hydrozoan eye development as in bilaterians, supports the monophyletic evolutionary origin of all animal eyes. We then propose that during the early evolution of animals, distinct classes of Pax genes, which may have played redundant roles at that time, were flexibly deployed for eye development in different animal lineages.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Cell Biology (Gehring)
UniBasel Contributors:Gehring, Walter Jakob
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:National Academy of Sciences
ISSN:0027-8424
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:08 Jun 2012 06:56
Deposited On:08 Jun 2012 06:49

Repository Staff Only: item control page