edoc

MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity

Punga, A. R. and Maj, M. and Lin, S. and Meinen, S. and Ruegg, M. A.. (2011) MuSK levels differ between adult skeletal muscles and influence postsynaptic plasticity. The European journal of neuroscience, Vol. 33, H. 5. pp. 890-898.

[img] PDF
Restricted to Repository staff only

679Kb

Official URL: http://edoc.unibas.ch/dok/A5844194

Downloads: Statistics Overview

Abstract

Muscle-specific tyrosine kinase (MuSK) is involved in the formation and maintenance of the neuromuscular junction (NMJ), and is necessary for NMJ integrity. As muscle involvement is strikingly selective in pathological conditions in which MuSK is targeted, including congenital myasthenic syndrome with MuSK mutation and MuSK antibody-seropositive myasthenia gravis, we hypothesized that the postsynaptic response to MuSK-agrin signalling differs between adult muscles. Transcript levels of postsynaptic proteins were compared between different muscles in wild-type adult mice. MuSK expression was high in the soleus and sternomastoid muscles and low in the extensor digitorum longus (EDL) and omohyoid muscles. The acetylcholine receptor (AChR) alpha subunit followed a similar expression pattern, whereas expression of Dok-7, Lrp4 and rapsyn was comparable between the muscles. We subsequently examined muscles in mice that overexpressed a miniaturized form of neural agrin or MuSK. In these transgenic mice, the soleus and sternomastoid muscles responded with formation of ectopic AChR clusters, whereas such clusters were almost absent in the EDL and omohyoid muscles. Electroporation of Dok-7 revealed its important role as an activator of MuSK in AChR cluster formation in adult muscles. Together, our findings indicate for the first time that adult skeletal muscles harbour different endogenous levels of MuSK and that these levels determine the ability to form ectopic AChR clusters upon overexpression of agrin or MuSK. We believe that these findings are important for our understanding of adult muscle plasticity and the selective muscle involvement in neuromuscular disorders in which MuSK is diminished.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Neurobiology > Pharmacology/Neurobiology (Rüegg)
UniBasel Contributors:Rüegg, Markus A.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Blackwell
ISSN:0953-816X
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Related URLs:
Identification Number:
edoc DOI:
Last Modified:21 Feb 2019 04:14
Deposited On:14 Sep 2012 06:40

Repository Staff Only: item control page