edoc

Electrophysiological evidence for two transduction pathways within a bitter-sensitive taste receptor

Glendinning, J. and Hills, T.. (1997) Electrophysiological evidence for two transduction pathways within a bitter-sensitive taste receptor. Journal of Neurophysiology, Vol. 78, H. 2. pp. 734-745.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5265632

Downloads: Statistics Overview

Abstract

Among the sapid stimuli, those that elicit bitter taste are the most abundant and structurally diverse. To accommodate this diversity, animals are thought to use multiple bitter transduction pathways. We examined the role of individual taste receptor cells (TRCs) in this transduction process by focusing on one of the taste organs, or chemosensilla, of a caterpillar (Manduca sexta). This chemosensillum (the lateral styloconicum) contains four functionally distinct TRCs: the salt, sugar, inositol, and deterrent TRCs, which are known to respond strongly to, in respective order, salts, sugars, inositol, and compounds humans describe as bitter. Using an extracellular recording technique, we tested three hypotheses for how a structurally diverse array of bitter compounds (salicin, caffeine, and aristolochic acid) could excite the same chemosensillum: several TRCs within the lateral styloconica respond to the bitter compounds; only the deterrent TRC responds to the bitter compounds, through a single transduction pathway; and only the deterrent TRC responds to the bitter compounds, but through multiple transduction pathways. To discriminate among these hypotheses, we tested five predictions. The first addressed how many TRCs within the lateral styloconica responded to the bitter compounds. Subsequent predictions were based on the results of the test of the first prediction and assumed that only the deterrent TRC responded to these compounds. These latter predictions addressed whether the bitter compounds acted through one or multiple transduction pathways. We obtained evidence consistent with the third hypothesis: only the deterrent TRC responded to the bitter compounds; the temporal patterns of firing and concentration-response curves elicited by caffeine and salicin were similar to each other, but different from those elicited by aristolochic acid; the patterns of sensory adaptation and disadaptation elicited by caffeine and salicin were similar to each another, but different from those elicited by aristolochic acid; reciprocal cross-adaptation occurred between caffeine and salicin, but not between aristolochic acid and caffeine or aristolochic acid and salicin; and the responsiveness of individual deterrent TRCs to caffeine and salicin correlated significantly, whereas that to aristolochic acid and caffeine or aristolochic acid and salicin did not. Taken together, these results indicate that the deterrent TRC contains at least two excitatory transduction pathways: one responds to caffeine and salicin and the other to aristolochic acid. To our knowledge, this is the first direct support for the existence of two bitter transduction pathways within a single TRC.
Faculties and Departments:07 Faculty of Psychology
UniBasel Contributors:Hills, Thomas
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Physiological Society
ISSN:0022-3077
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:24
Deposited On:22 Mar 2012 13:37

Repository Staff Only: item control page