edoc

A translocated protein of Bartonella henselae interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome

Rhomberg, T. A. and Truttmann, M. C. and Guye, P. and Ellner, Y. and Dehio, C.. (2009) A translocated protein of Bartonella henselae interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome. Cellular Microbiology, Vol. 11, H. 6. pp. 927-945.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5258991

Downloads: Statistics Overview

Abstract

Bartonella henselae enters human endothelial cells (ECs) by two alternative routes: either by endocytosis, giving rise to Bartonella-containing vacuoles or by invasome-mediated internalization. Only the latter process depends on the type IV secretion system VirB/VirD4 and involves the formation of cell surface-associated bacterial aggregates, which get engulfed by EC membranes in an F-actin-dependent manner, eventually resulting in their complete internalization. Here, we report that among the VirB/VirD4-translocated effector proteins BepA-BepG only BepG is required for triggering invasome-mediated internalization. Expression of BepG in the Bep-deficient DeltabepA-G mutant restored invasome-mediated internalization. Likewise, ectopic expression of BepG in ECs also restored invasome-mediated internalization of the DeltabepA-G mutant, while no discernable cytoskeletal rearrangements were triggered in uninfected cells. Rather, BepG inhibited endocytic uptake of B. henselae into Bartonella-containing vacuoles and other endocytic processes, that is, invasin-mediated uptake of Yersinia enterocolitica and uptake of inert microspheres. BepG thus triggers invasome-mediated internalization primarily by inhibiting bacterial endocytosis. Bacteria accumulating on the cell surface then induce locally the F-actin rearrangements characteristic for the invasome. These cytoskeletal changes encompass both the rearrangement of pre-existing F-actin fibres and the de novo polymerization of cortical F-actin in the periphery of the invasome by Rac1/Scar1/WAVE- and Cdc42/WASP-dependent pathways that involve the recruitment of the Arp2/3 complex.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Infection Biology > Molecular Microbiology (Dehio)
UniBasel Contributors:Dehio, Christoph
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Blackwell
ISSN:1462-5814
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:21

Repository Staff Only: item control page