Fransen, J. A. and Hauri, H. P. and Ginsel, L. A. and Naim, H. Y.. (1991) Naturally occurring mutations in intestinal sucrase-isomaltase provide evidence for the existence of an intracellular sorting signal in the isomaltase subunit. The Journal of cell biology, Vol. 115, H. 1. pp. 45-57.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A5257804
Downloads: Statistics Overview
Abstract
Mutations in the sucrase-isomaltase gene can lead to the synthesis of transport-incompetent or functionally altered enzyme in congenital sucrase-isomaltase deficiency (CSID) (Naim, H. Y., J. Roth, E. Sterchi, M. Lentze, P. Milla, J. Schmitz, and H. P. Hauri. J. Clin. Invest. 82:667-679). In this paper we have characterized two novel mutant phenotypes of CSID at the subcellular and protein levels. The first phenotype revealed a sucrase-isomaltase protein that is synthesized as a single chain, mannose-rich polypeptide precursor (pro-SI) and is electrophoretically indistinguishable from pro-SI in normal controls. By contrast to normal controls, however, pro-SI does not undergo terminal glycosylation in the Golgi apparatus. Subcellular localization of pro-SI by immunoelectron microscopy revealed unusual labeling of the molecule in the basolateral membrane and no labeling in the brush border membrane thus indicating that pro-SI is missorted to the basolateral membrane. Mapping of biosynthetically labeled pro-SI with four epitope- and conformation-specific monoclonal antibodies suggested that conformational and/or structural alterations in the pro-SI protein have prevented posttranslational processing of the carbohydrate chains of the mannose-rich precursor and have lead to its missorting to the basolateral membrane. The second phenotype revealed two variants of pro-SI precursors that differ in their content of mannose-rich oligosaccharides. Conversion of these forms to a complex glycosylated polypeptide occurs at a slow rate and is incomplete. Unlike its counterpart in normal controls, pro-SI in this phenotype is intracellularly cleaved. This cleavage produces an isomaltase-like subunit that is transport competent and is correctly sorted to the brush border membrane since it could be localized in the brush border membrane by anti-isomaltase mAb. The sucrase subunit is not transported to the cell surface and is most likely degraded intracellularly. We conclude that structural features in the isomaltase region of pro-SI are required for transport and sorting of the sucrase-isomaltase complex.
Faculties and Departments: | 05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Pharmacology/Neurobiology (Hauri) |
---|---|
UniBasel Contributors: | Hauri, Hans-Peter |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Rockefeller University Press |
ISSN: | 0021-9525 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Identification Number: |
|
Last Modified: | 07 Jan 2016 09:05 |
Deposited On: | 22 Mar 2012 13:30 |
Repository Staff Only: item control page