Repository logo
Log In
  1. Home
  2. Unibas
  3. Publications
  4. Distributed multipole moments in atomistic force fields. implementation and applications
 
  • Details

Distributed multipole moments in atomistic force fields. implementation and applications

Date Issued
2009
Author(s)
Plattner, Nuria Selina
DOI
10.5451/unibas-004970352
Abstract
The accuracy of atomistic force fields depends on the complexity of the interatomic potential function as well as on the parametrization of the potential. In conventional
force fields, the electrostatic potential is represented by atom-centered point charges. Point charges can be understood as the first term of multipole expansions, which converge with increasing number of terms towards the accurate representation of the molecular potential given by the electron density distribution.
Here, the distributed multipole analysis (DMA) is used to obtain atomic multipole moments. The accuracy of distributed multipole potentials is tested for several molecules and compared to point charge potentials. The investigation is focused on convergence of the multipole expansion and conformational dependence. Energies and forces required for molecular dynamics (MD) simulations with atomic multipole
potentials are implemented into the CHARMM program. Important points to consider for the implementation are the orientation of the multipole moments and the conformational dependence of multipole parameters.
The implementation is applied to different systems: The splitting of the infrared (IR) absorption band for photodissociated CO in Myoglobin is analyzed comparing different multipole models for CO. A relationship is established between the IR frequency and the CO orientation in the binding pocket. The experimental IR spectrum of CO
in amorphous ice is reproduced using multipole potentials for CO and water. The relationship between infrared frequencies and ice structures is analyzed. Furthermore,
atomic multipole moments are applied to methane and CO clathrate hydrates. Lattice modes are calculated and compared to experiment. The influence of different guest
molecules on lattice modes and structure is characterized.
File(s)
Loading...
Thumbnail Image
Name

diss_n.plattner.pdf

Size

3.3 MB

Format

Adobe PDF

Checksum

(MD5):6353b52091d62c70fe1f7c7144cbb126

University of Basel

edoc
Open Access Repository University of Basel

  • About edoc
  • About Open Access at the University of Basel
  • edoc Policy

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement