edoc

Browse by Basel Contributors ID

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Date | Item Type | Refereed | No Grouping

Vogt, Marco and Stiemer, Alexander and Coray, Sein and Schuldt, Heiko. (2020) Chronos: The Swiss Army Knife for Database Evaluations. In: 23rd International Conference on Extending Database Technology. Proceedings. pp. 583-586.

Vogt, Marco and Hansen, Nils and Schönholz, Jan and Lengweiler, David and Geissmann, Isabel and Philipp, Sebastian and Stiemer, Alexander and Schuldt, Heiko. (2020) Polypheny-DB: Towards Bridging the Gap Between Polystores and HTAP Systems. In: Heterogeneous Data Management, Polystores, and Analytics for Healthcare. DMAH 2020, Poly 2020. . Cham, pp. 25-36.

Stiemer, Alexander and Vogt, Marco and Schuldt, Heiko and Störl, Uta. (2020) PolyMigrate: Dynamic Schema Evolution and Data Migration in a Distributed Polystore. In: Heterogeneous Data Management, Polystores, and Analytics for Healthcare. DMAH 2020, Poly 2020.. Cham, pp. 42-53.

Vogt, Marco and Stiemer, Alexander and Schuldt, Heiko. (2018) Polypheny-DB: Towards a Distributed and Self-Adaptive Polystore. In: Proceedings of the 2018 IEEE International Conference on Big Data (Big Data) -- 7th Workshop on Scalable Cloud Data Management (SCDM'2018). pp. 3364-3373.

Fetai, Ilir and Stiemer, Alexander and Schuldt, Heiko. (2017) QuAD: A Quorum Protocol for Adaptive Data Management in the Cloud. In: Big Data (Big Data), 2017 IEEE International Conference on. p. 10.

Vogt, Marco and Stiemer, Alexander and Schuldt, Heiko. (2017) Icarus: Towards a Multistore Database System. In: Big Data (Big Data), 2017 IEEE International Conference on.

Stiemer, Alexander and Fetai, Ilir and Schuldt, Heiko. (2016) Analyzing the Performance of Data Replication and Data Partitioning in the Cloud: the Beowulf Approach. In: Big Data (Big Data), 2016 IEEE International Conference on.

Stiemer, Alexander and Fetai, Ilir and Schuldt, Heiko. (2015) Comparison of Eager and Quorum-based Replication in a Cloud Environment. In: Big Data (Big Data), 2015 IEEE International Conference on. p. 11.