Runge, Manuela and Molteni, Fabrizio and Mandike, Renata and Snow, Robert W. and Lengeler, Christian and Mohamed, Ally and Pothin, Emilie. (2020) Applied mathematical modelling to inform national malaria policies, strategies and operations in Tanzania. Malaria journal, 19. p. 101.
PDF
- Published Version
Available under License CC BY (Attribution). 4Mb |
Official URL: https://edoc.unibas.ch/75823/
Downloads: Statistics Overview
Abstract
More than ever, it is crucial to make the best use of existing country data, and analytical tools for developing malaria control strategies as the heterogeneity in malaria risk within countries is increasing, and the available malaria control tools are expanding while large funding gaps exist. Global and local policymakers, as well as funders, increasingly recognize the value of mathematical modelling as a strategic tool to support decision making. This case study article describes the long-term use of modelling in close collaboration with the National Malaria Control Programme (NMCP) in Tanzania, the challenges encountered and lessons learned.; In Tanzania, a recent rebound in prevalence led to the revision of the national malaria strategic plan with interventions targeted to the malaria risk at the sub-regional level. As part of the revision, a mathematical malaria modelling framework for setting specific predictions was developed and used between 2016 and 2019 to (1) reproduce setting specific historical malaria trends, and (2) to simulate in silico the impact of future interventions. Throughout the project, multiple stakeholder workshops were attended and the use of mathematical modelling interactively discussed.; In Tanzania, the model application created an interdisciplinary and multisectoral dialogue platform between modellers, NMCP and partners and contributed to the revision of the national malaria strategic plan by simulating strategies suggested by the NMCP. The uptake of the modelling outputs and sustained interest by the NMCP were critically associated with following factors: (1) effective sensitization to the NMCP, (2) regular and intense communication, (3) invitation for the modellers to participate in the strategic plan process, and (4) model application tailored to the local context.; Empirical data analysis and its use for strategic thinking remain the cornerstone for evidence-based decision-making. Mathematical impact modelling can support the process both by unifying all stakeholders in one strategic process and by adding new key evidence required for optimized decision-making. However, without a long-standing partnership, it will be much more challenging to sensibilize programmes to the usefulness and sustained use of modelling and local resources within the programme or collaborating research institutions need to be mobilized.
Faculties and Departments: | 09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) 09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Department of Epidemiology and Public Health (EPH) > Health Interventions > Malaria Interventions (Lengeler) 09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Former Units within Swiss TPH > Infectious Disease Modelling > Epidemiology and Transmission Dynamics (Smith) |
---|---|
UniBasel Contributors: | Runge, Manuela and Molteni, Fabrizio and Lengeler, Christian and Pothin, Emilie |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | BioMed Central |
ISSN: | 1475-2875 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Identification Number: |
|
edoc DOI: | |
Last Modified: | 11 Mar 2020 08:14 |
Deposited On: | 11 Mar 2020 08:14 |
Repository Staff Only: item control page