edoc

The Neurite Outgrowth Inhibitory Nogo-A-Δ20 Region Is an Intrinsically Disordered Segment Harbouring Three Stretches with Helical Propensity

Zelenay, Viviane and Arzt, Michael E. and Bibow, Stefan and Schwab, Martin E. and Riek, Roland. (2016) The Neurite Outgrowth Inhibitory Nogo-A-Δ20 Region Is an Intrinsically Disordered Segment Harbouring Three Stretches with Helical Propensity. Plos one, 11 (9). e0161813.

[img]
Preview
PDF - Published Version
Available under License CC BY (Attribution).

3580Kb

Official URL: https://edoc.unibas.ch/93831/

Downloads: Statistics Overview

Abstract

Functional recovery from central neurotrauma, such as spinal cord injury, is limited by myelin-associated inhibitory proteins. The most prominent example, Nogo-A, imposes an inhibitory cue for nerve fibre growth via two independent domains: Nogo-A-Δ20 (residues 544-725 of the rat Nogo-A sequence) and Nogo-66 (residues 1026-1091). Inhibitory signalling from these domains causes a collapse of the neuronal growth cone via individual receptor complexes, centred around sphingosine 1-phosphate receptor 2 (S1PR2) for Nogo-A-Δ20 and Nogo receptor 1 (NgR1) for Nogo-66. Whereas the helical conformation of Nogo-66 has been studied extensively, only little structural information is available for the Nogo-A-Δ20 region. We used nuclear magnetic resonance (NMR) spectroscopy to assess potential residual structural propensities of the intrinsically disordered Nogo-A-Δ20. Using triple resonance experiments, we were able to assign 94% of the non-proline backbone residues. While secondary structure analysis and relaxation measurements highlighted the intrinsically disordered character of Nogo-A-Δ20, three stretches comprising residues 561EAIQESL567, 639EAMNVALKALGT650, and 693SNYSEIAK700 form transient α-helical structures. Interestingly, 561EAIQESL567 is situated directly adjacent to one of the most conserved regions of Nogo-A-Δ20 that contains a binding motif for β1-integrin. Likewise, 639EAMNVALKALGT650 partially overlaps with the epitope recognized by 11C7, a Nogo-A-neutralizing antibody that promotes functional recovery from spinal cord injury. Diffusion measurements by pulse-field gradient NMR spectroscopy suggest concentration- and oxidation state-dependent dimerisation of Nogo-A-Δ20. Surprisingly, NMR and isothermal titration calorimetry (ITC) data could not validate previously shown binding of extracellular loops of S1PR2 to Nogo-A-Δ20.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum
05 Faculty of Science > Departement Biozentrum > Structural Biology & Biophysics > Structural Biology (Hiller)
UniBasel Contributors:Bibow, Stefan
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Public library of Science
e-ISSN:1932-6203
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Identification Number:
edoc DOI:
Last Modified:07 Mar 2023 11:07
Deposited On:07 Mar 2023 11:07

Repository Staff Only: item control page