Magnetic ordering of nuclear spins in an interacting two-dimensional electron gas

Simon, Pascal and Braunecker, Bernd and Loss, Daniel. (2008) Magnetic ordering of nuclear spins in an interacting two-dimensional electron gas. Physical Review B, Vol. 77, H. 4 , 045108, 16 S..

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5254613

Downloads: Statistics Overview


We investigate the magnetic behavior of nuclear spins embedded in a two-dimensional (2D) interacting electron gas using a Kondo lattice model description. We derive an effective magnetic Hamiltonian for the nuclear spins, which is of the Rudermann-Kittel-Kasuya-Yosida type and where the interactions between the nuclear spins are strongly modified by the electron-electron interactions. We show that the nuclear magnetic ordering at finite temperature relies on the (anomalous) behavior of the 2D static electron spin susceptibility and thus provides a connection between low-dimensional magnetism and nonanalyticities in interacting 2D electron systems. Using various perturbative and nonperturbative approximation schemes in order to establish the general shape of the electron spin susceptibility as a function of its wave vector, we show that the nuclear spins locally order ferromagnetically and that this ordering can become global in certain regimes of interest. We demonstrate that the associated Curie temperature for the nuclear system increases with the electron-electron interactions up to the millikelvin range.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretische Physik Mesoscopics (Loss)
UniBasel Contributors:Loss, Daniel
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Institute of Physics
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:25
Deposited On:22 Mar 2012 13:48

Repository Staff Only: item control page