Spin relaxation at the singlet-triplet crossing in a quantum dot

Golovach, Vitaly N. and Khaetskii, Alexander and Loss, Daniel. (2008) Spin relaxation at the singlet-triplet crossing in a quantum dot. Physical Review B, Vol. 77, H. 4 , 045328, 28 S..

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5254614

Downloads: Statistics Overview


We study spin relaxation in a two-electron quantum dot in the vicinity of the singlet-triplet crossing. The spin relaxation occurs due to a combined effect of the spin-orbit, Zeeman, and electron-phonon interactions. The singlet-triplet relaxation rates exhibit strong variations as a function of the singlet-triplet splitting. We show that the Coulomb interaction between the electrons has two competing effects on the singlet-triplet spin relaxation. One effect is to enhance the relative strength of spin-orbit coupling in the quantum dot, resulting in larger spin-orbit splittings and thus in a stronger coupling of spin to charge. The other effect is to make the charge density profiles of the singlet and triplet look similar to each other, thus diminishing the ability of charge environments to discriminate between singlet and triplet states. We thus find essentially different channels of singlet-triplet relaxation for the case of strong and weak Coulomb interactions. Finally, for the linear in momentum Dresselhaus and Rashba spin-orbit interactions, we calculate the singlet-triplet relaxation rates to leading order in the spin-orbit interaction and find that they are proportional to the second power of the Zeeman energy, in agreement with recent experiments on triplet-to-singlet relaxation in quantum dots.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretische Physik Mesoscopics (Loss)
UniBasel Contributors:Loss, Daniel
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Institute of Physics
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:25
Deposited On:22 Mar 2012 13:48

Repository Staff Only: item control page