edoc

Minimal distributed charges: Multipolar quality at the cost of point charge electrostatics

Unke, Oliver T. and Devereux, Mike and Meuwly, Markus. (2017) Minimal distributed charges: Multipolar quality at the cost of point charge electrostatics. Journal of Chemical Physics, 147 (16). p. 161712.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/85122/

Downloads: Statistics Overview

Abstract

Most empirical force fields use atom-centered point charges (PCs) to represent the electrostatic potential (ESP) around molecules. While such PC models are computationally efficient, they are unable to capture anisotropic electronic features, such as σ holes or lone pairs. These features are better described using atomic multipole (MTP) moments, which significantly improve the quality of the resulting ESP. However, the improvement comes at the expense of a considerably increased computational complexity and cost for calculating the interaction energies and forces. In the present work, a novel minimal distributed charge model (MDCM) based on off-centered point charges is presented and the quality of the resulting ESP is compared to the performance of MTPs and atom-centered PC models for several test molecules. All three models are fitted using the same algorithm based on differential evolution, which is available as a Fortran90 program from the authors upon request. We show that the MDCM is capable of approximating the reference ab initio ESP with an accuracy as good as, or better than, MTPs without the need for computationally expensive higher order multipoles. Further it is demonstrated that the MDCM is numerically stable in molecular dynamics simulations and is able to reproduce electrostatic interaction energies and thermodynamic quantities with the same accuracy as MTPs at reduced computational cost.
Faculties and Departments:05 Faculty of Science > Departement Chemie > Chemie > Physikalische Chemie (Meuwly)
UniBasel Contributors:Meuwly, Markus and Devereux, Michael
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:AIP Publishing
ISSN:0021-9606
e-ISSN:1089-7690
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:17 Nov 2021 10:44
Deposited On:17 Nov 2021 10:44

Repository Staff Only: item control page