Černý, Jiří and Hayder, Thomas. (2021) Critical window for the vacant set left by random walk on the configuration model. Preprints Fachbereich Mathematik, 2021 (16).
|
PDF
395Kb |
Official URL: https://edoc.unibas.ch/84117/
Downloads: Statistics Overview
Abstract
We study the simple random walk on the configuration model with given degree sequence $(d_1^n, \dots ,d_n^n)$ and investigate the connected components of its vacant set at level $u>0$. We show that the size of the maximal connected component exhibits a phase transition at level $u^*$ which can be related with the critical parameter of random interlacements on a certain Galton-Watson tree. We further show that there is a critical window of size $n^{-1/3}$ around $u^*$ in which the largest connected components of the vacant set have a metric space scaling limit resembling the one of the critical Erdős-Rényi random graph.
Faculties and Departments: | 05 Faculty of Science > Departement Mathematik und Informatik > Mathematik > Wahrscheinlichkeitstheorie (Cerny) 12 Special Collections > Preprints Fachbereich Mathematik |
---|---|
UniBasel Contributors: | Černý, Jiří |
Item Type: | Preprint |
Publisher: | Universität Basel |
Language: | English |
edoc DOI: | |
Last Modified: | 23 Jul 2021 13:25 |
Deposited On: | 23 Jul 2021 13:25 |
Repository Staff Only: item control page