edoc

On-demand entanglement generation using dynamic single-electron sources

Hofer, Patrick P. and Dasenbrook, David and Flindt, Christian. (2017) On-demand entanglement generation using dynamic single-electron sources. Physica Status Solidi (B) - Basic Solid State Physics , 254 (3). p. 1600582.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/82995/

Downloads: Statistics Overview

Abstract

We review our recent proposals for the on-demand generation of entangled few-electron states using dynamic single-electron sources. The generation of entanglement can be traced back to the single-electron entanglement produced by quantum point contacts (QPCs) acting as electronic beam splitters. The coherent partitioning of a single electron leads to entanglement between the two outgoing arms of the QPC. We describe our various approaches for generating and certifying entanglement in dynamic electronic conductors and we quantify the influence of detrimental effects such as finite electronic temperatures and other dephasing mechanisms. The prospects for future experiments are discussed and possible avenues for further developments are identified.
[GRAPHICS]
(a) The coherent partitioning of a single electron on a QPC leads to entanglement between the outgoing arms. The entanglement can be detected using two copies of the state. (b) A time-bin entangled state is generated by partitioning two electrons on a QPC followed by projection onto the subspace with one electron in each arm. The two-electron entanglement is due to the entanglement of the individual single-electron states. In both panels, circles represent single-electron sources and squares represent detectors.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretical Quantum Physics (Potts)
UniBasel Contributors:Potts, Patrick
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Wiley
ISSN:0370-1972
e-ISSN:1521-3951
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:11 May 2021 08:31
Deposited On:11 May 2021 08:15

Repository Staff Only: item control page