edoc

Incremental Search for Counterexample-Guided Cartesian Abstraction Refinement

Seipp, Jendrik and von Allmen, Samuel and Helmert, Malte. (2020) Incremental Search for Counterexample-Guided Cartesian Abstraction Refinement. In: Proceedings of the 30th International Conference on Automated Planning and Scheduling (ICAPS 2020), 30. pp. 244-248.

[img] PDF - Accepted Version
229Kb

Official URL: https://edoc.unibas.ch/78718/

Downloads: Statistics Overview

Abstract

Counterexample-guided Cartesian abstraction refinement has been shown to yield informative heuristics for optimal classical planning. The algorithm iteratively finds an abstract solution and uses it to decide how to refine the abstraction. Since the abstraction grows in each step, finding solutions is the main bottleneck of the refinement loop. We cast the refinements as an incremental search problem and show that this drastically reduces the time for computing abstractions.
Faculties and Departments:05 Faculty of Science > Departement Mathematik und Informatik > Informatik > Artificial Intelligence (Helmert)
UniBasel Contributors:Seipp, Jendrik and von Allmen, Samuel and Helmert, Malte
Item Type:Conference or Workshop Item, refereed
Conference or workshop item Subtype:Conference Paper
Publisher:AAAI Press
Note:Publication type according to Uni Basel Research Database: Conference paper
Language:English
Related URLs:
edoc DOI:
Last Modified:02 Oct 2020 13:23
Deposited On:02 Oct 2020 13:21

Repository Staff Only: item control page