Sheaffer, Karyn L. and Updike, Dustin L. and Mango, Susan E.. (2008) The Target of Rapamycin pathway antagonizes pha-4/FoxA to control development and aging. Current Biology, 18 (18). pp. 1355-1364.
Full text not available from this repository.
Official URL: https://edoc.unibas.ch/70556/
Downloads: Statistics Overview
Abstract
FoxA factors are critical regulators of embryonic development and postembryonic life, but little is know about the upstream pathways that modulate their activity. C. elegans pha-4 encodes a FoxA transcription factor that is required to establish the foregut in embryos and to control growth and longevity after birth. We previously identified the AAA+ ATPase homolog ruvb-1 as a potent suppressor of pha-4 mutations.; Here we show that ruvb-1 is a component of the Target of Rapamycin (TOR) pathway in C. elegans (CeTOR). Both ruvb-1 and let-363/TOR control nucleolar size and promote localization of box C/D snoRNPs to nucleoli, suggesting a role in rRNA maturation. Inactivation of let-363/TOR or ruvb-1 suppresses the lethality associated with reduced pha-4 activity. The CeTOR pathway controls protein homeostasis and also contributes to adult longevity. We find that pha-4 is required to extend adult lifespan in response to reduced CeTOR signaling. Mutations in the predicted CeTOR target rsks-1/S6 kinase or in ife-2/eIF4E also reduce protein biosynthesis and extend lifespan, but only rsks-1 mutations require pha-4 for adult longevity. In addition, rsks-1, but not ife-2, can suppress the larval lethality associated with pha-4 loss-of-function mutations.; The data suggest that pha-4 and the CeTOR pathway antagonize one another to regulate postembryonic development and adult longevity. We suggest a model in which nutrients promote TOR and S6 kinase signaling, which represses pha-4/FoxA, leading to a shorter lifespan. A similar regulatory hierarchy may function in other animals to modulate metabolism, longevity, or disease.
Faculties and Departments: | 05 Faculty of Science > Departement Biozentrum > Growth & Development > Cell and Developmental Biology (Mango) |
---|---|
UniBasel Contributors: | Mango, Susan Elizabeth |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Cell Press |
ISSN: | 0960-9822 |
e-ISSN: | 1879-0445 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Related URLs: | |
Identification Number: |
|
Last Modified: | 16 Nov 2020 09:50 |
Deposited On: | 16 Nov 2020 09:50 |
Repository Staff Only: item control page