Hinaut, Antoine and Eren, Baran and Steiner, Roland and Freund, Sara and Jöhr, Res and Glatzel, Thilo and Marot, Laurent and Meyer, Ernst and Kawai, Shigeki. (2017) Nanostructuring of an alkali halide surface by low temperature plasma exposure. Physical Chemistry Chemical Physics, 19 (24). pp. 16251-16256.
Full text not available from this repository.
Official URL: https://edoc.unibas.ch/68771/
Downloads: Statistics Overview
Abstract
Templating insulating surfaces at the nanoscale is an interesting prospect for applications that involve the adsorption of molecules or nanoparticles where electronic decoupling of the adsorbed species from the substrate is needed. In this study, we present a method to structure alkali halide surfaces at the nanoscale using a combination of low temperature plasma exposure and annealing, and characterize the surfaces by atomic force microscopy. We find that nanostructurating can be controlled by the duration of the exposure, the atomic mass of the plasma gas and the subsequent step-by-step annealing process. In contrast to previous studies with electron or high energy (few keV) ion irradiation, our approach of employing moderate particle energy (10-15 eV Ar + or He + ions) results in fine nanostructuring at length scales of nanometers and even single atom vacancies.
Faculties and Departments: | 05 Faculty of Science > Departement Physik > Physik > Nanomechanik (Meyer) |
---|---|
UniBasel Contributors: | Glatzel, Thilo and Hinaut, Antoine |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | The Royal Society of Chemistry |
ISSN: | 1463-9076 |
e-ISSN: | 1463-9084 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Related URLs: | |
Identification Number: |
|
edoc DOI: | |
Last Modified: | 03 Apr 2023 06:45 |
Deposited On: | 18 Feb 2019 15:58 |
Repository Staff Only: item control page