edoc

Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding

Galvez, T. and Parmentier, M. L. and Joly, C. and Malitschek, B. and Kaupmann, K. and Kuhn, R. and Bittiger, H. and Froestl, W. and Bettler, B. and Pin, J. P.. (1999) Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. Journal of biological chemistry, Vol. 274, H. 19. pp. 13362-13369.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5262284

Downloads: Statistics Overview

Abstract

The gamma-aminobutyric acid type B (GABAB) receptor is distantly related to the metabotropic glutamate receptor-like family of G-protein-coupled receptors (family 3). Sequence comparison revealed that, like metabotropic glutamate receptors, the extracellular domain of the two GABAB receptor splice variants possesses an identical region homologous to the bacterial periplasmic leucine-binding protein (LBP), but lacks the cysteine-rich region common to all other family 3 receptors. A three-dimensional model of the LBP-like domain of the GABAB receptor was constructed based on the known structure of LBP. This model predicts that four of the five cysteine residues found in this GABAB receptor domain are important for its correct folding. This conclusion is supported by analysis of mutations of these Cys residues and a decrease in the thermostability of the binding site after dithiothreitol treatment. Additionally, Ser-246 was found to be critical for CGP64213 binding. Interestingly, this residue aligns with Ser-79 of LBP, which forms a hydrogen bond with the ligand. The mutation of Ser-269 was found to differently affect the affinity of various ligands, indicating that this residue is involved in the selectivity of recognition of GABAB receptor ligands. Finally, the mutation of two residues, Ser-247 and Gln-312, was found to increase the affinity for agonists and to decrease the affinity for antagonists. Such an effect of point mutations can be explained by the Venus flytrap model for receptor activation. This model proposes that the initial step in the activation of the receptor by agonist results from the closure of the two lobes of the binding domain.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Division of Physiology > Molecular Neurobiology Synaptic Plasticity (Bettler)
UniBasel Contributors:Bettler, Bernhard
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:American Society of Biological Chemists
ISSN:0021-9258
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:23
Deposited On:22 Mar 2012 13:34

Repository Staff Only: item control page