edoc

Subtype-selective interaction with the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) regulates cell surface expression of GABA(B) receptors

Sauter, Kathrin and Grampp, Thomas and Fritschy, Jean-Marc and Kaupmann, Klemens and Bettler, Bernhard and Mohler, Hanns and Benke, Dietmar. (2005) Subtype-selective interaction with the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) regulates cell surface expression of GABA(B) receptors. Journal of biological chemistry, Vol. 280, H. 39. pp. 33566-33572.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5262237

Downloads: Statistics Overview

Abstract

The metabotropic gamma-aminobutyric acid, type B (GABA(B)) receptors mediate the slow component of GABAergic transmission in the brain. Functional GABA(B) receptors are heterodimers of the two subunits GABA(B1) and GABA(B2), of which GABA(B1) exists in two main isoforms, GABA(B1a) and GABA(B1b). The significance of the structural heterogeneity of GABA(B) receptors, the mechanism leading to their differential targeting in neurons as well as the regulation of cell surface numbers of GABA(B) receptors, is poorly understood. To gain insights into these processes, we searched for proteins interacting with the C-terminal domain of GABA(B2). Here, we showed that the transcription factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) directly interacts with GABA(B) receptors in a subtype-selective manner to regulate cell surface expression of GABA(B1a)/GABA(B2) receptors upon co-expression in HEK 293 cells. The interaction of CHOP with GABA(B1a)/GABA(B2) receptors resulted in their intracellular accumulation and in a reduced number of cell surface receptors. This regulation required the interaction of CHOP via two distinct domains with the heterodimeric receptor; its C-terminal leucine zipper associates with the leucine zipper present in the C-terminal domain of GABA(B2), and its N-terminal domain associates with an as yet unidentified site on GABA(B1a). In conclusion, the data indicated a subtype-selective regulation of cell surface receptors by interaction with the transcription factor CHOP.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Division of Physiology > Molecular Neurobiology Synaptic Plasticity (Bettler)
UniBasel Contributors:Bettler, Bernhard
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:American Society of Biological Chemists
ISSN:0021-9258
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:23
Deposited On:22 Mar 2012 13:34

Repository Staff Only: item control page