Chicherova, Natalia and Hieber, Simone E. and Khimchenko, Anna and Bikis, Christos and Mueller, Bert and Cattin, Philippe. (2018) Automatic deformable registration of histological slides to {μCT} volume {3D}-Data. Journal of Microscopy, 271 (1). pp. 49-61 .
Full text not available from this repository.
Official URL: https://edoc.unibas.ch/63974/
Downloads: Statistics Overview
Abstract
Localizing a histological section in the three‐dimensional dataset of a different imaging modality is a challenging 2D‐3D registration problem. In the literature, several approaches have been proposed to solve this problem; however, they cannot be considered as fully automatic. Recently, we developed an automatic algorithm that could successfully find the position of a histological section in a micro computed tomography (μCT) volume. For the majority of the datasets, the result of localization corresponded to the manual results. However, for some datasets, the matching μCT slice was off the ground‐truth position. Furthermore, elastic distortions, due to histological preparation, could not be accounted for in this framework. In the current study, we introduce two optimization frameworks based on normalized mutual information, which enabled us to accurately register histology slides to volume data. The rigid approach allocated 81 % of histological sections with a median position error of 8.4 μm in jaw bone datasets, and the deformable approach improved registration by 33 μm with respect to the median distance error for four histological slides in the cerebellum dataset.
Faculties and Departments: | 03 Faculty of Medicine > Departement Biomedical Engineering > Imaging and Computational Modelling > Biomaterials Science Center (Müller) 03 Faculty of Medicine > Departement Biomedical Engineering > Imaging and Computational Modelling > Center for medical Image Analysis & Navigation (Cattin) |
---|---|
UniBasel Contributors: | Cattin, Philippe Claude |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Wiley |
ISSN: | 0022-2720 |
e-ISSN: | 1365-2818 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Identification Number: |
|
Last Modified: | 11 Aug 2020 12:43 |
Deposited On: | 11 Aug 2020 12:43 |
Repository Staff Only: item control page