Liebendörfer, Christine. (2005) Heights and determinants over quaternion algebras. Communications in algebra, 33 (10). pp. 3699-3717.
Full text not available from this repository.
Official URL: https://edoc.unibas.ch/63932/
Downloads: Statistics Overview
Abstract
In Liebendörfer (20047. Liebendörfer , C. ( 2004 ). Linear equations and heights over division algebras . J. Number Theory 105 : 101 – 133 . [CSA] [CROSSREF] View all references) we defined a height function for matrices over a positive definite rational quaternion algebra. In this article, we prove that this height can be expressed, like the well-known height over number fields, as a product of local factors involving the maximal minors of the matrix. Part of our proof uses a quaternionic determinant invented by Moore (192210. Moore , E. H. ( 1922 ). On the determinant of an Hermitian matrix of quaternionic elements . Bull. Amer. Math. Soc. 28 : 161 – 162 . [CSA] View all references) and yields a non-commutative analogue of the Cauchy–Binet formula. The new formula of the height enables us to improve a result of Liebendörfer (20047. Liebendörfer , C. ( 2004 ). Linear equations and heights over division algebras . J. Number Theory 105 : 101 – 133 . [CSA] [CROSSREF] View all references).
Faculties and Departments: | 05 Faculty of Science > Departement Mathematik und Informatik > Mathematik |
---|---|
UniBasel Contributors: | Zehrt, Christine |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Taylor & Francis |
ISSN: | 0092-7872 |
e-ISSN: | 1532-4125 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Identification Number: | |
Last Modified: | 10 Sep 2020 07:16 |
Deposited On: | 10 Sep 2020 07:16 |
Repository Staff Only: item control page