edoc

Heights and determinants over quaternion algebras

Liebendörfer, Christine. (2005) Heights and determinants over quaternion algebras. Communications in algebra, 33 (10). pp. 3699-3717.

Full text not available from this repository.

Official URL: https://edoc.unibas.ch/63932/

Downloads: Statistics Overview

Abstract

In Liebendörfer (20047. Liebendörfer , C. ( 2004 ). Linear equations and heights over division algebras . J. Number Theory 105 : 101 – 133 . [CSA] [CROSSREF] View all references) we defined a height function for matrices over a positive definite rational quaternion algebra. In this article, we prove that this height can be expressed, like the well-known height over number fields, as a product of local factors involving the maximal minors of the matrix. Part of our proof uses a quaternionic determinant invented by Moore (192210. Moore , E. H. ( 1922 ). On the determinant of an Hermitian matrix of quaternionic elements . Bull. Amer. Math. Soc. 28 : 161 – 162 . [CSA] View all references) and yields a non-commutative analogue of the Cauchy–Binet formula. The new formula of the height enables us to improve a result of Liebendörfer (20047. Liebendörfer , C. ( 2004 ). Linear equations and heights over division algebras . J. Number Theory 105 : 101 – 133 . [CSA] [CROSSREF] View all references).
Faculties and Departments:05 Faculty of Science > Departement Mathematik und Informatik > Mathematik
UniBasel Contributors:Zehrt, Christine
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Taylor & Francis
ISSN:0092-7872
e-ISSN:1532-4125
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:10 Sep 2020 07:16
Deposited On:10 Sep 2020 07:16

Repository Staff Only: item control page