Good, Stephan and Walter, Martin A. and Waser, Beatrice and Wang, Xuejuan and Müller-Brand, Jan and Béhé, Martin P. and Reubi, Jean-Claude and Maecke, Helmut R.. (2008) Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours. European Journal of Nuclear Medicine and Molecular Imaging, 35 (10). pp. 1868-1877.
Full text not available from this repository.
Official URL: https://edoc.unibas.ch/63322/
Downloads: Statistics Overview
Abstract
PURPOSE: Diethylenetriamine-pentaacetic acid (DTPA)-coupled minigastrins are unsuitable for therapeutic application with the available beta-emitting radiometals due to low complex stability. Low tumour-to-kidney ratio of the known radiopharmaceuticals is further limiting their potency. We used macrocyclic chelators for coupling to increase complex stability, modified the peptide sequence to enhance radiolytic stability and studied tumour-to-kidney ratio and metabolic stability using (111)In-labelled derivatives. METHODS: Gastrin derivatives with decreasing numbers of glutamic acids were synthesised using (111)In as surrogate for therapeutic radiometals for in vitro and in vivo studies. Gastrin receptor affinities of the (nat)In-metallated compounds were determined by receptor autoradiography using (125)I-CCK as radioligand. Internalisation was evaluated in AR4-2J cells. Enzymatic stability was determined by incubating the (111)In-labelled peptides in human serum. Biodistribution was performed in AR4-2J-bearing Lewis rats. RESULTS: IC(50) values of the (nat)In-metallated gastrin derivatives vary between 1.2 and 4.8 nmol/L for all methionine-containing derivatives. Replacement of methionine by norleucine, isoleucine, methionine-sulfoxide and methionine-sulfone resulted in significant decrease of receptor affinity (IC(50) between 9.9 and 1,195 nmol/L). All cholecystokinin receptor affinities were <100 nmol/L. All (111)In-labelled radiopeptides showed receptor-specific internalisation. Serum mean-life times varied between 2.0 and 72.6 h, positively correlating with the number of Glu residues. All (111)In-labelled macrocyclic chelator conjugates showed higher tumour-to-kidney ratios after 24 h (0.37-0.99) compared to (111)In-DTPA-minigastrin 0 (0.05). Tumour wash out between 4 and 24 h was low. Imaging studies confirmed receptor-specific blocking of the tumour uptake. CONCLUSIONS: Reducing the number of glutamates increased tumour-to-kidney ratio but resulted in lower metabolic stability. The properties of the macrocyclic chelator-bearing derivatives make them potentially suitable for clinical purposes.
Faculties and Departments: | 03 Faculty of Medicine > Bereich Querschnittsfächer (Klinik) > Ehemalige Einheiten Querschnittsfächer (Klinik) > Radiologische Chemie (Mindt) 03 Faculty of Medicine > Departement Klinische Forschung > Bereich Querschnittsfächer (Klinik) > Ehemalige Einheiten Querschnittsfächer (Klinik) > Radiologische Chemie (Mindt) 03 Faculty of Medicine > Bereich Querschnittsfächer (Klinik) > Radiologie USB > Nuklearmedizin (Wild) 03 Faculty of Medicine > Departement Klinische Forschung > Bereich Querschnittsfächer (Klinik) > Radiologie USB > Nuklearmedizin (Wild) |
---|---|
UniBasel Contributors: | Müller, Jan and Mäcke, Helmut |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Springer Verlag |
ISSN: | 1619-7070 |
e-ISSN: | 1619-7089 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Related URLs: | |
Identification Number: |
|
Last Modified: | 11 Aug 2020 08:25 |
Deposited On: | 10 Aug 2020 16:19 |
Repository Staff Only: item control page