edoc

The DNA-gate of Bacillus subtilis gyrase is predominantly in the closed conformation during the DNA supercoiling reaction

Gubaev, A. and Hilbert, M. and Klostermeier, D.. (2009) The DNA-gate of Bacillus subtilis gyrase is predominantly in the closed conformation during the DNA supercoiling reaction. Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, H. 32. pp. 13278-13283.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5259698

Downloads: Statistics Overview

Abstract

Gyrase is the only type II topoisomerase that introduces negative supercoils into DNA. Supercoiling is catalyzed via a strand-passage mechanism, in which the gate DNA (gDNA) is transiently cleaved, and a second DNA segment, the transfer DNA (tDNA), is passed through the gap before the gDNA is religated. Strand passage requires an opening of the so-called DNA-gate by ≈2 nm. A single-molecule FRET study reported equal populations of open and closed DNA-gate in topoisomerase II. We present here single-molecule FRET experiments that monitor the conformation of DNA bound to the DNA-gate of Bacillus subtilis gyrase and the conformation of the DNA-gate itself. DNA bound to gyrase adopts two different conformations, one slightly, one severely distorted. DNA distortion requires cleavage, but neither ATP nor the presence of a tDNA. At the same time, the DNA-gate of gyrase is predominantly in the closed conformation. In agreement with the single molecule data and with the danger of dsDNA breaks for genome integrity, >5% of cleavage complexes are detected in equilibrium. Quinolone inhibitors favor DNA cleavage by B. subtilis gyrase, but disfavor DNA distortion, and the DNA-gate remains in the closed conformation. Our results demonstrate that DNA binding, distortion and cleavage, and gate-opening are mechanistically distinct events. During the relaxation and supercoiling reactions, gyrase with an open DNA-gate is not significantly populated, consistent with gate-opening as a very rare event that only occurs briefly to allow for strand passage.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Biophysical Chemistry (Klostermeier)
UniBasel Contributors:Klostermeier, Dagmar
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:National Academy of Sciences
ISSN:0027-8424
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:23
Deposited On:22 Mar 2012 13:33

Repository Staff Only: item control page