Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes

Stieb, Sara M. and Cortesi, Fabio and Sueess, Lorenz and Carleton, Karen L. and Salzburger, Walter and Marshall, N. J.. (2017) Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes. Molecular Ecology, 26 (5). pp. 1323-1342.

[img] PDF - Published Version
Restricted to Repository staff only


Official URL: http://edoc.unibas.ch/58840/

Downloads: Statistics Overview


Coral reefs belong to the most diverse ecosystems on our planet. The diversity in coloration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and examined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, convergent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long-wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Interestingly, not only did all species express SWS1 - a UV-sensitive opsin - and possess UV-transmitting lenses, most species also feature UV-reflective body parts. This suggests that damsels might benefit from a close-range UV-based 'private' communication channel, which is likely to be hidden from 'UV-blind' predators. Finally, we found that LWS expression is highly correlated to feeding strategy in damsels with herbivorous feeders having an increased LWS expression, possibly enhancing the detection of benthic algae.
Faculties and Departments:05 Faculty of Science > Departement Umweltwissenschaften > Integrative Biologie > Evolutionary Biology (Salzburger)
UniBasel Contributors:Salzburger, Walter
Item Type:Article, refereed
Article Subtype:Research Article
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
edoc DOI:
Last Modified:24 Jan 2019 16:38
Deposited On:02 Feb 2018 15:32

Repository Staff Only: item control page