Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA

Dehio, C. and Grossmann, K. and Schell, J. and Schmulling, T.. (1993) Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Molecular Biology, Vol. 23, H. 6. pp. 1199-1210.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5259059

Downloads: Statistics Overview


The rolA gene of the TL-DNA of Agrobacterium rhizogenes Ri-plasmid plays a major role in establishing the hairy root syndrome in transgenic plants. Transgenic tobacco plants (Nicotiana tabacum L.) expressing constitutively the rolA gene under the transcriptional control of the 35S RNA promoter show pronounced phenotypical alterations. P35S-rolA transgenic tobacco plants are characterized by stunted growth, dark green wrinkled leaves with an altered length-to-width ratio, condensed influorescences, retarded onset of flowering, a reduced number of flowers and shortened styles. To investigate whether the pleiotropic alterations of growth and development are linked to an altered hormonal status we have compared the immunoreactive content of indole-3-acetic acid, cytokinins, abscisic acid, gibberellin and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) of seedlings and different tissues of P35S-rolA transgenic plants, transgenic plants expressing the rolA gene under control of its own phloem-specific promoter and wild-type plants. Multiple tissue-specific alterations of phytohormone concentrations are the consequence of rolA gene activity. Changes of phytohormonal content can explain part of the rolA-induced phenotypic alterations. Most strikingly, in young and fully developed leaves of rolA and P35S-rolA transgenic clones a 40-60% reduction of immunoreactive gibberellin A1 was found, as compared to wild-type leaves. Treatment of wild-type tobacco plants with inhibitors of gibberellin biosynthesis phenotypic alterations similar to those of rolA transgenic plants. This suggests that the reduction of gibberellic acid content is indirectly but causally involved in rolA-induced alterations of stem elongation and planar leaf blade growth.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Infection Biology > Molecular Microbiology (Dehio)
UniBasel Contributors:Dehio, Christoph
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Kluwer Academic Publ.
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:23
Deposited On:22 Mar 2012 13:32

Repository Staff Only: item control page