Kunnecke, B. and Seelig, J.. (1991) Glycogen metabolism as detected by in vivo and in vitro 13C-NMR spectroscopy using [1,2-13C2]glucose as substrate. Biochimica et biophysica acta, Vol. 1095, H. 2. pp. 103-113.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A5257466
Downloads: Statistics Overview
Abstract
The metabolism of glucose to glycogen in the liver of fasted and well-fed rats was investigated with 13C nuclear magnetic resonance spectroscopy using [1,2-(13)C2]glucose as the main substrate. The unique spectroscopic feature of this molecule is the 13C-13C homonuclear coupling leading to characteristic doublets for the C-1 and C-2 resonances of glucose and its breakdown products as long as the two 13C nuclei remain bonded together. The doublet resonances of [1,2-(13)C2]glucose thus provide an ideal marker to follow the fate of this exogenous substrate through the metabolic pathways. [1,2-(13)C2]Glucose was injected intraperitoneally into anesthetized rats and the in vivo 13C-NMR measurements of the intact animals revealed the transformation of the injected glucose into liver glycogen. Glycogen was extracted from the liver and high resolution 13C-NMR spectra were obtained before and after hydrolysis of glycogen. Intact [1,2-13C2]glucose molecules give rise to doublet resonances, natural abundance [13C]glucose molecules produce singlet resonances. From an analysis of the doublet-to-singlet intensities the following conclusions were derived. (i) In fasted rats virtually 100% of the glycosyl units in glycogen were 13C-NMR visible. In contrast, the 13C-NMR visibility of glycogen decreased to 30-40% in well-fed rats. (ii) In fed rats a minimum of 67 +/- 7% of the exogenous [1,2-(13)C2]glucose was incorporated into the liver glycogen via the direct pathway. No contribution of the indirect pathway could be detected. (iii) In fasted rats externally supplied glucose appeared to be consumed in different metabolic processes and less [1,2-(13)C2]glucose was found to be incorporated into glycogen (13 +/- 1%). However, the observation of [5,6-(13)C2]glucose in liver glycogen provided evidence for the operation of the so-called indirect pathway of glycogen synthesis. The activity of the indirect pathway was at least 9% but not more than 30% of the direct pathway. (vi) The pentose phosphate pathway was of little significance for glucose but became detectable upon injection of [1-(13)C]ribose.
Faculties and Departments: | 05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Biophysical Chemistry (Seelig J) |
---|---|
UniBasel Contributors: | Seelig, Joachim |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Elsevier |
ISSN: | 0006-3002 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Last Modified: | 22 Mar 2012 14:22 |
Deposited On: | 22 Mar 2012 13:30 |
Repository Staff Only: item control page