edoc

Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane

Bernèche, S. and Nina, M. and Roux, B.. (1998) Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophysical journal, Vol. 75, H. 4. pp. 1603-1618.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5249322

Downloads: Statistics Overview

Abstract

Molecular dynamics trajectories of melittin in an explicit dimyristoyl phosphatidylcholine (DMPC) bilayer are generated to study the details of lipid-protein interactions at the microscopic level. Melittin, a small amphipathic peptide found in bee venom, is known to have a pronounced effect on the lysis of membranes. The peptide is initially set parallel to the membrane-solution interfacial region in an alpha-helical conformation with unprotonated N-terminus. Solid-state nuclear magnetic resonance (NMR) and polarized attenuated total internal reflectance Fourier transform infrared (PATIR-FTIR) properties of melittin are calculated from the trajectory to characterize the orientation of the peptide relative to the bilayer. The residue Lys7 located in the hydrophobic moiety of the helix and residues Lys23, Arg24, Gln25, and Gln26 at the C-terminus hydrophilic form hydrogen bonds with water molecules and with the ester carbonyl groups of the lipids, suggesting their important contribution to the stability of the helix in the bilayer. Lipid acyl chains are closely packed around melittin, contributing to the stable association with the membrane. Calculated density profiles and order parameters of the lipid acyl chains averaged over the molecular dynamics trajectory indicate that melittin has effects on both layers of the membrane. The presence of melittin in the upper layer causes a local thinning of the bilayer that favors the penetration of water through the lower layer. The energetic factors involved in the association of melittin at the membrane surface are characterized using an implicit mean-field model in which the membrane and the surrounding solvent are represented as structureless continuum dielectric material. The results obtained by solving the Poisson-Bolztmann equation numerically are in qualitative agreement with the detailed dynamics. The influence of the protonation state of the N-terminus of melittin is examined. After 600 ps, the N-terminus of melittin is protonated and the trajectory is continued for 400 ps, which leads to an important penetration of water molecules into the bilayer. These observations provide insights into how melittin interacts with membranes and the mechanism by which it enhances their lysis.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Computational Biophysics (Bernèche)
UniBasel Contributors:Bernèche, Simon
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Biophysical Society
ISSN:0006-3495
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:22
Deposited On:22 Mar 2012 13:30

Repository Staff Only: item control page